Transmission probability of gas molecules through porous layers at Knudsen diffusion

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Engineering Mathematics Pub Date : 2023-12-07 DOI:10.1007/s10665-023-10308-0
Wolfgang Macher, Yuri Skorov, Günter Kargl, Sunny Laddha, Stephan Zivithal
{"title":"Transmission probability of gas molecules through porous layers at Knudsen diffusion","authors":"Wolfgang Macher, Yuri Skorov, Günter Kargl, Sunny Laddha, Stephan Zivithal","doi":"10.1007/s10665-023-10308-0","DOIUrl":null,"url":null,"abstract":"<p>Gas flow through layers of porous materials plays a crucial role in technical applications, geology, petrochemistry, and space sciences (e.g., fuel cells, catalysis, shale gas production, and outgassing of volatiles from comets). In many applications the Knudsen regime is predominant, where the pore size is small compared to the mean free path between intermolecular collisions. In this context common parameters to describe the gas percolation through layers of porous media are the probability of gas molecule transmission and the Knudsen diffusion coefficient of the medium. We show how probabilistic considerations on layer partitions lead to the analytical description of the permeability of a porous medium to gas flow as a function of layer thickness. The derivations are made on the preconditions that the molecule reflection at pore surfaces is diffuse and that the pore structure is homogenous on a scale much larger than the pore size. By applying a bi-hemispherical Maxwell distribution, relations between the layer transmission probability, the half-transmission thickness, and the Knudsen diffusion coefficient are obtained. For packings of spheres, expressions of these parameters in terms of porosity and grain size are derived and compared with former standard models. A verification of the derived equations is given by means of numerical simulations, also providing evidence that our analytical model for sphere packing is more accurate than the former classical models.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"2 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10308-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gas flow through layers of porous materials plays a crucial role in technical applications, geology, petrochemistry, and space sciences (e.g., fuel cells, catalysis, shale gas production, and outgassing of volatiles from comets). In many applications the Knudsen regime is predominant, where the pore size is small compared to the mean free path between intermolecular collisions. In this context common parameters to describe the gas percolation through layers of porous media are the probability of gas molecule transmission and the Knudsen diffusion coefficient of the medium. We show how probabilistic considerations on layer partitions lead to the analytical description of the permeability of a porous medium to gas flow as a function of layer thickness. The derivations are made on the preconditions that the molecule reflection at pore surfaces is diffuse and that the pore structure is homogenous on a scale much larger than the pore size. By applying a bi-hemispherical Maxwell distribution, relations between the layer transmission probability, the half-transmission thickness, and the Knudsen diffusion coefficient are obtained. For packings of spheres, expressions of these parameters in terms of porosity and grain size are derived and compared with former standard models. A verification of the derived equations is given by means of numerical simulations, also providing evidence that our analytical model for sphere packing is more accurate than the former classical models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气体分子在努森扩散条件下通过多孔层的传输概率
气体流经多孔材料层在技术应用、地质学、石油化学和空间科学(如燃料电池、催化、页岩气生产和彗星挥发气体)中发挥着至关重要的作用。在许多应用中,孔隙尺寸与分子间碰撞的平均自由路径相比较小,这在克努森体系中占主导地位。在这种情况下,描述气体在多孔介质层中渗透的常用参数是气体分子传输概率和介质的克努森扩散系数。我们展示了如何通过对层分区的概率考虑,分析描述多孔介质对气体流动的渗透性与层厚度的函数关系。推导的前提条件是孔隙表面的分子反射是扩散的,孔隙结构在比孔隙尺寸大得多的尺度上是均匀的。通过应用双半球麦克斯韦分布,得到了层透射概率、半透射厚度和努森扩散系数之间的关系。对于球形填料,推导出了这些参数在孔隙率和晶粒尺寸方面的表达式,并与以前的标准模型进行了比较。通过数值模拟对推导出的方程进行了验证,也证明了我们的球体堆积分析模型比以前的经典模型更精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Engineering Mathematics
Journal of Engineering Mathematics 工程技术-工程:综合
CiteScore
2.10
自引率
7.70%
发文量
44
审稿时长
6 months
期刊介绍: The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following: • Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods. • Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas. The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly. Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.
期刊最新文献
Erosion of surfaces by trapped vortices Nanoparticle uptake by a semi-permeable, spherical cell from an external planar diffusive field. II. Numerical study of temporal and spatial development validated using FEM On the positive self-similar solutions of the boundary-layer wedge flow problem of a power-law fluid Experimental and theoretical investigation of impinging droplet solidification at moderate impact velocities Reflection and transmission of SH waves at the interface of a V-notch and a piezoelectric/piezomagnetic half-space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1