Analysis and preconditioning of a probabilistic domain decomposition algorithm for elliptic boundary value problems

Francisco Bernal, Jorge Morón-Vidal
{"title":"Analysis and preconditioning of a probabilistic domain decomposition algorithm for elliptic boundary value problems","authors":"Francisco Bernal, Jorge Morón-Vidal","doi":"arxiv-2312.03930","DOIUrl":null,"url":null,"abstract":"PDDSparse is a new hybrid parallelisation scheme for solving large-scale\nelliptic boundary value problems on supercomputers, which can be described as a\nFeynman-Kac formula for domain decomposition. At its core lies a stochastic\nlinear, sparse system for the solutions on the interfaces, whose entries are\ngenerated via Monte Carlo simulations. Assuming small statistical errors, we\nshow that the random system matrix ${\\tilde G}(\\omega)$ is near a nonsingular\nM-matrix $G$, i.e. ${\\tilde G}(\\omega)+E=G$ where $||E||/||G||$ is small. Using\nnonstandard arguments, we bound $||G^{-1}||$ and the condition number of $G$,\nshowing that both of them grow moderately with the degrees of freedom of the\ndiscretisation. Moreover, the truncated Neumann series of $G^{-1}$ -- which is\nstraightforward to calculate -- is the basis for an excellent preconditioner\nfor ${\\tilde G}(\\omega)$. These findings are supported by numerical evidence.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PDDSparse is a new hybrid parallelisation scheme for solving large-scale elliptic boundary value problems on supercomputers, which can be described as a Feynman-Kac formula for domain decomposition. At its core lies a stochastic linear, sparse system for the solutions on the interfaces, whose entries are generated via Monte Carlo simulations. Assuming small statistical errors, we show that the random system matrix ${\tilde G}(\omega)$ is near a nonsingular M-matrix $G$, i.e. ${\tilde G}(\omega)+E=G$ where $||E||/||G||$ is small. Using nonstandard arguments, we bound $||G^{-1}||$ and the condition number of $G$, showing that both of them grow moderately with the degrees of freedom of the discretisation. Moreover, the truncated Neumann series of $G^{-1}$ -- which is straightforward to calculate -- is the basis for an excellent preconditioner for ${\tilde G}(\omega)$. These findings are supported by numerical evidence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
椭圆边界值问题概率域分解算法的分析与预处理
PDDSparse 是一种在超级计算机上求解大规模椭圆边界值问题的新型混合并行化方案,可以说是一种用于域分解的费曼-卡克公式。它的核心是一个随机线性稀疏系统,用于求解界面上的问题,其条目通过蒙特卡罗模拟生成。假设统计误差较小,我们可以证明随机系统矩阵 ${\tilde G}(\omega)$接近于非正弦 M 矩阵 $G$,即 ${\tilde G}(\omega)+E=G$,其中 $||E||/|||G||$ 较小。利用非标准论证,我们对 $||G^{-1}||$ 和 $G$ 的条件数进行了约束,结果表明,它们都随着解密自由度的增加而适度增长。此外,$G^{-1}$的截断诺依曼数列--计算起来非常简单--是${tilde G}(\omega)$的优秀预处理的基础。这些发现得到了数值证据的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the SQP Method for Hyperbolic PDE-Constrained Optimization in Acoustic Full Waveform Inversion Detection of a piecewise linear crack with one incident wave Randomized quasi-Monte Carlo and Owen's boundary growth condition: A spectral analysis Energy stable gradient flow schemes for shape and topology optimization in Navier-Stokes flows Exponential time propagators for elastodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1