Thermal boundary-layer solutions for forced convection in a porous domain above a flat plate

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Engineering Mathematics Pub Date : 2023-12-08 DOI:10.1007/s10665-023-10311-5
Miltiadis V. Papalexandris
{"title":"Thermal boundary-layer solutions for forced convection in a porous domain above a flat plate","authors":"Miltiadis V. Papalexandris","doi":"10.1007/s10665-023-10311-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper we present numerical solutions for thermal boundary layers that are developed during forced convection in a porous medium located above a flat plate. The basic feature of such layers is that they are nonsimilar. In our study we consider thermal nonequilibrium between the two phases. Accordingly, each phase is endowed with its own energy equation. The boundary-layer equations are solved with the local nonsimilarity method. We examine convection of air and liquid water, while the solid matrix is supposed to be made of cast iron. According to our computations, there are significant differences between the temperature distributions of the two phases, especially at short and moderate distances from the edge of the flat plate. Also, due to the high conductivity of the solid matrix, the thermal boundary layers are much thicker than the hydrodynamic one. The profile of the local Nusselt number is quite sensitive on the Prandtl number and only far downstream it scales with the square root of the distance. Finally, the validity of the local thermal equilibrium assumption is assessed via a comparative study. According to it, this assumption leads to significant inaccuracies in the temperature profiles but yields reasonable estimates for the thickness of the thermal boundary layer of the fluid.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10311-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present numerical solutions for thermal boundary layers that are developed during forced convection in a porous medium located above a flat plate. The basic feature of such layers is that they are nonsimilar. In our study we consider thermal nonequilibrium between the two phases. Accordingly, each phase is endowed with its own energy equation. The boundary-layer equations are solved with the local nonsimilarity method. We examine convection of air and liquid water, while the solid matrix is supposed to be made of cast iron. According to our computations, there are significant differences between the temperature distributions of the two phases, especially at short and moderate distances from the edge of the flat plate. Also, due to the high conductivity of the solid matrix, the thermal boundary layers are much thicker than the hydrodynamic one. The profile of the local Nusselt number is quite sensitive on the Prandtl number and only far downstream it scales with the square root of the distance. Finally, the validity of the local thermal equilibrium assumption is assessed via a comparative study. According to it, this assumption leads to significant inaccuracies in the temperature profiles but yields reasonable estimates for the thickness of the thermal boundary layer of the fluid.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平板上方多孔域中强制对流的热边界层解法
本文介绍了位于平板上方的多孔介质在强制对流过程中形成的热边界层的数值解法。这种层的基本特征是它们是非相似的。在研究中,我们考虑了两相之间的热非平衡。因此,每相都有自己的能量方程。边界层方程采用局部非相似性方法求解。我们研究了空气和液态水的对流,同时假设固体基体由铸铁制成。根据我们的计算,两相的温度分布存在显著差异,尤其是在距离平板边缘较短和中等距离的地方。此外,由于固体基体的高传导性,热边界层要比流体动力边界层厚得多。局部努塞尔特数曲线对普朗特数相当敏感,只有在远下游才随距离的平方根变化。最后,通过比较研究评估了局部热平衡假设的有效性。据此,该假设会导致温度曲线的严重误差,但会对流体热边界层的厚度产生合理的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Engineering Mathematics
Journal of Engineering Mathematics 工程技术-工程:综合
CiteScore
2.10
自引率
7.70%
发文量
44
审稿时长
6 months
期刊介绍: The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following: • Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods. • Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas. The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly. Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.
期刊最新文献
Erosion of surfaces by trapped vortices Nanoparticle uptake by a semi-permeable, spherical cell from an external planar diffusive field. II. Numerical study of temporal and spatial development validated using FEM On the positive self-similar solutions of the boundary-layer wedge flow problem of a power-law fluid Experimental and theoretical investigation of impinging droplet solidification at moderate impact velocities Reflection and transmission of SH waves at the interface of a V-notch and a piezoelectric/piezomagnetic half-space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1