{"title":"The Characteristic Gluing Problem for the Einstein Vacuum Equations: Linear and Nonlinear Analysis","authors":"Stefanos Aretakis, Stefan Czimek, Igor Rodnianski","doi":"10.1007/s00023-023-01394-y","DOIUrl":null,"url":null,"abstract":"<div><p>This is the second paper in a series of papers addressing the characteristic gluing problem for the Einstein vacuum equations. We solve the codimension-10 characteristic gluing problem for characteristic data which are close to the Minkowski data. We derive an infinite-dimensional space of gauge-dependent charges and a 10-dimensional space of gauge-invariant charges that are conserved by the linearized null constraint equations and act as obstructions to the gluing problem. The gauge-dependent charges can be matched by applying angular and transversal gauge transformations of the characteristic data. By making use of a special hierarchy of radial weights of the null constraint equations, we construct the null lapse function and the conformal geometry of the characteristic hypersurface, and we show that the aforementioned charges are in fact the only obstructions to the gluing problem. Modulo the gauge-invariant charges, the resulting solution of the null constraint equations is <span>\\(C^{m+2}\\)</span> for any specified integer <span>\\(m\\ge 0\\)</span> in the tangential directions and <span>\\(C^2\\)</span> in the transversal directions to the characteristic hypersurface. We also show that higher-order (in all directions) gluing is possible along bifurcated characteristic hypersurfaces (modulo the gauge-invariant charges).</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 6","pages":"3081 - 3205"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01394-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This is the second paper in a series of papers addressing the characteristic gluing problem for the Einstein vacuum equations. We solve the codimension-10 characteristic gluing problem for characteristic data which are close to the Minkowski data. We derive an infinite-dimensional space of gauge-dependent charges and a 10-dimensional space of gauge-invariant charges that are conserved by the linearized null constraint equations and act as obstructions to the gluing problem. The gauge-dependent charges can be matched by applying angular and transversal gauge transformations of the characteristic data. By making use of a special hierarchy of radial weights of the null constraint equations, we construct the null lapse function and the conformal geometry of the characteristic hypersurface, and we show that the aforementioned charges are in fact the only obstructions to the gluing problem. Modulo the gauge-invariant charges, the resulting solution of the null constraint equations is \(C^{m+2}\) for any specified integer \(m\ge 0\) in the tangential directions and \(C^2\) in the transversal directions to the characteristic hypersurface. We also show that higher-order (in all directions) gluing is possible along bifurcated characteristic hypersurfaces (modulo the gauge-invariant charges).
期刊介绍:
The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society.
The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.