Mineralogy, Chemistry, and Thermal and Surface Properties of Various Technological Types of K-Bentonite from the Dolná Ves Deposit (Kremnické vrchy Mts., Western Carpathians, Slovakia)
M. Osacký, Y. Bai, P. Uhlík, H. Pálková, M. Čaplovičová
{"title":"Mineralogy, Chemistry, and Thermal and Surface Properties of Various Technological Types of K-Bentonite from the Dolná Ves Deposit (Kremnické vrchy Mts., Western Carpathians, Slovakia)","authors":"M. Osacký, Y. Bai, P. Uhlík, H. Pálková, M. Čaplovičová","doi":"10.1007/s42860-023-00262-4","DOIUrl":null,"url":null,"abstract":"<p>The Dolná Ves K-bentonite deposit is one of a few known economic accumulations of illite-smectite in the world. Several studies have been done on the illite-smectitic component isolated from the Dolná Ves K-bentonite, but there is a shortage of analytical data on the K-bentonite itself. The main goal of the present study was to perform mineralogical and physico-chemical characterizations of various technological types of K-bentonites from the Dolná Ves deposit to better understand the relationships between the various qualitative types and their properties. The type I (high-grade) K-bentonite contains 88–91 wt.% of illite-smectite. The type II (low-grade) K-bentonite contained substantially less illite-smectite, ranging from 37 to 63 wt.%. The illite-smectites isolated from the type I K-bentonites displayed greater expandability, contained more octahedral Mg and less octahedral Fe, had greater cation exchange capacity (CEC), smaller thickness of fundamental particles, and thinner illite-smectite crystals in comparison with illite-smectites from the type II K-bentonites. The LOI (loss-on-ignition) and Al<sub>2</sub>O<sub>3</sub> content increased with increasing amount of illite-smectite. The increase in the expandability by 10% corresponded to an increase in CEC by ~10 meq/100 g. The type I K-bentonites had much greater mass loss at <250°C due to greater expandability. The best tilemaking performance was expected for the type I K-bentonite. This raw material could also be potentially valuable for the pharmaceutical, cosmetic and food industries. Overall, the results showed that the studied technological types of K-bentonites from the Dolná Ves deposit differ not only in terms of illite-smectite contents but also in terms of the nature of the illite-smectites.</p>","PeriodicalId":10320,"journal":{"name":"Clays and Clay Minerals","volume":"6 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clays and Clay Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s42860-023-00262-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Dolná Ves K-bentonite deposit is one of a few known economic accumulations of illite-smectite in the world. Several studies have been done on the illite-smectitic component isolated from the Dolná Ves K-bentonite, but there is a shortage of analytical data on the K-bentonite itself. The main goal of the present study was to perform mineralogical and physico-chemical characterizations of various technological types of K-bentonites from the Dolná Ves deposit to better understand the relationships between the various qualitative types and their properties. The type I (high-grade) K-bentonite contains 88–91 wt.% of illite-smectite. The type II (low-grade) K-bentonite contained substantially less illite-smectite, ranging from 37 to 63 wt.%. The illite-smectites isolated from the type I K-bentonites displayed greater expandability, contained more octahedral Mg and less octahedral Fe, had greater cation exchange capacity (CEC), smaller thickness of fundamental particles, and thinner illite-smectite crystals in comparison with illite-smectites from the type II K-bentonites. The LOI (loss-on-ignition) and Al2O3 content increased with increasing amount of illite-smectite. The increase in the expandability by 10% corresponded to an increase in CEC by ~10 meq/100 g. The type I K-bentonites had much greater mass loss at <250°C due to greater expandability. The best tilemaking performance was expected for the type I K-bentonite. This raw material could also be potentially valuable for the pharmaceutical, cosmetic and food industries. Overall, the results showed that the studied technological types of K-bentonites from the Dolná Ves deposit differ not only in terms of illite-smectite contents but also in terms of the nature of the illite-smectites.
期刊介绍:
Clays and Clay Minerals aims to present the latest advances in research and technology concerning clays and other fine-grained minerals, including but not limited to areas in agronomy, ceramics, colloid chemistry, crystallography, environmental science, foundry engineering, geochemistry, geology, medicinal chemistry, mineralogy, nanoscience, petroleum engineering, physical chemistry, sedimentology, soil mechanics, and soil science. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.