Shanglin Chen, Jian Sun, Jingping Li, Kui Yi, Chenfei Wang, Jianda Shao, and Meiping Zhu
{"title":"Controlling lateral thickness distributions of magnetron sputtering deposited coatings using shadow masks","authors":"Shanglin Chen, Jian Sun, Jingping Li, Kui Yi, Chenfei Wang, Jianda Shao, and Meiping Zhu","doi":"10.1364/ome.500104","DOIUrl":null,"url":null,"abstract":"A lateral thickness distribution control model for magnetron sputter-deposited coatings was established using shadow masks. The sputtering yield distributions were investigated in detail, particularly the variation trend from straight to curved tracks, based on the erosion profiles of rectangular targets. On this basis, a mathematical model for a planetary rotation system was established to simulate the thickness distribution of coatings on different substrates, including flat, spherical, and aspherical shapes, accurately. A shadow mask with multi-Gaussian outlines was proposed, and the coating thickness was effectively controlled according to specific distribution requirements by optimizing the profile parameters of the masks using a genetic algorithm. Flat and ellipsoidal substrates were used to prepare Mo and Si monolayer coatings to verify the effectiveness of this model. Although the diameters of the substrates were close to the lengths of the rectangular targets, the results showed that uniform coatings were obtained on the flat substrate, whereas the ellipsoidal substrate exhibited high-precision gradient coatings, with maximum deviations below 0.5%, which proved the validity of this approach.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"67 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.500104","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A lateral thickness distribution control model for magnetron sputter-deposited coatings was established using shadow masks. The sputtering yield distributions were investigated in detail, particularly the variation trend from straight to curved tracks, based on the erosion profiles of rectangular targets. On this basis, a mathematical model for a planetary rotation system was established to simulate the thickness distribution of coatings on different substrates, including flat, spherical, and aspherical shapes, accurately. A shadow mask with multi-Gaussian outlines was proposed, and the coating thickness was effectively controlled according to specific distribution requirements by optimizing the profile parameters of the masks using a genetic algorithm. Flat and ellipsoidal substrates were used to prepare Mo and Si monolayer coatings to verify the effectiveness of this model. Although the diameters of the substrates were close to the lengths of the rectangular targets, the results showed that uniform coatings were obtained on the flat substrate, whereas the ellipsoidal substrate exhibited high-precision gradient coatings, with maximum deviations below 0.5%, which proved the validity of this approach.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.