Controlling lateral thickness distributions of magnetron sputtering deposited coatings using shadow masks

IF 2.8 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Optical Materials Express Pub Date : 2023-12-07 DOI:10.1364/ome.500104
Shanglin Chen, Jian Sun, Jingping Li, Kui Yi, Chenfei Wang, Jianda Shao, and Meiping Zhu
{"title":"Controlling lateral thickness distributions of magnetron sputtering deposited coatings using shadow masks","authors":"Shanglin Chen, Jian Sun, Jingping Li, Kui Yi, Chenfei Wang, Jianda Shao, and Meiping Zhu","doi":"10.1364/ome.500104","DOIUrl":null,"url":null,"abstract":"A lateral thickness distribution control model for magnetron sputter-deposited coatings was established using shadow masks. The sputtering yield distributions were investigated in detail, particularly the variation trend from straight to curved tracks, based on the erosion profiles of rectangular targets. On this basis, a mathematical model for a planetary rotation system was established to simulate the thickness distribution of coatings on different substrates, including flat, spherical, and aspherical shapes, accurately. A shadow mask with multi-Gaussian outlines was proposed, and the coating thickness was effectively controlled according to specific distribution requirements by optimizing the profile parameters of the masks using a genetic algorithm. Flat and ellipsoidal substrates were used to prepare Mo and Si monolayer coatings to verify the effectiveness of this model. Although the diameters of the substrates were close to the lengths of the rectangular targets, the results showed that uniform coatings were obtained on the flat substrate, whereas the ellipsoidal substrate exhibited high-precision gradient coatings, with maximum deviations below 0.5%, which proved the validity of this approach.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"67 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.500104","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A lateral thickness distribution control model for magnetron sputter-deposited coatings was established using shadow masks. The sputtering yield distributions were investigated in detail, particularly the variation trend from straight to curved tracks, based on the erosion profiles of rectangular targets. On this basis, a mathematical model for a planetary rotation system was established to simulate the thickness distribution of coatings on different substrates, including flat, spherical, and aspherical shapes, accurately. A shadow mask with multi-Gaussian outlines was proposed, and the coating thickness was effectively controlled according to specific distribution requirements by optimizing the profile parameters of the masks using a genetic algorithm. Flat and ellipsoidal substrates were used to prepare Mo and Si monolayer coatings to verify the effectiveness of this model. Although the diameters of the substrates were close to the lengths of the rectangular targets, the results showed that uniform coatings were obtained on the flat substrate, whereas the ellipsoidal substrate exhibited high-precision gradient coatings, with maximum deviations below 0.5%, which proved the validity of this approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用阴影掩膜控制磁控溅射沉积涂层的横向厚度分布
利用阴影掩模建立了磁控溅射沉积涂层的横向厚度分布控制模型。根据矩形靶的侵蚀轮廓,详细研究了溅射产量分布,特别是从直线到曲线轨道的变化趋势。在此基础上,建立了行星旋转系统的数学模型,以精确模拟不同基底(包括平面、球面和非球面形状)上涂层的厚度分布。提出了具有多高斯轮廓的阴影掩膜,并通过遗传算法优化掩膜的轮廓参数,根据特定的分布要求有效地控制了涂层厚度。为了验证该模型的有效性,我们使用扁平和椭圆形基底制备了钼和硅单层涂层。虽然基底的直径与矩形靶的长度接近,但结果表明,在平面基底上获得了均匀的涂层,而在椭圆形基底上则表现出高精度的梯度涂层,最大偏差低于 0.5%,这证明了这种方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Materials Express
Optical Materials Express MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
5.50
自引率
3.60%
发文量
377
审稿时长
1.5 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to: Artificially engineered optical structures Biomaterials Optical detector materials Optical storage media Materials for integrated optics Nonlinear optical materials Laser materials Metamaterials Nanomaterials Organics and polymers Soft materials IR materials Materials for fiber optics Hybrid technologies Materials for quantum photonics Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.
期刊最新文献
2023 Optical Materials Express Emerging Researcher Best Paper Prize: editorial Enhanced p-type conductivity of hexagonal boron nitride by an efficient two-step doping strategy On the thermal stability of multilayer optics for use with high X-ray intensities Femtosecond laser synthesis of YAG:Ce3+ nanoparticles in liquid Silicon nanohole based enhanced light absorbers for thin film solar cell applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1