Nrf2 protects against cartilage endplate degeneration through inhibiting NCOA4‑mediated ferritinophagy.

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL International journal of molecular medicine Pub Date : 2023-12-08 DOI:10.3892/ijmm.2023.5339
Zhenkai Ma, Hui Lu, Xuemin Feng, Ting Du, Jianhua Li, Qiang Zhang, Xindong Gu, Yuandong Shao, Xingzhi Jing, Cheng Su
{"title":"Nrf2 protects against cartilage endplate degeneration through inhibiting NCOA4‑mediated ferritinophagy.","authors":"Zhenkai Ma, Hui Lu, Xuemin Feng, Ting Du, Jianhua Li, Qiang Zhang, Xindong Gu, Yuandong Shao, Xingzhi Jing, Cheng Su","doi":"10.3892/ijmm.2023.5339","DOIUrl":null,"url":null,"abstract":"Iron overload and ferroptosis are associated with intervertebral disc degeneration (IDD); however, the mechanism underlying the regulation of iron homeostasis remains to be elucidated. Nuclear factor erythroid 2‑related factor 2 (Nrf2) has been reported to regulate cellular iron homeostasis; however, its impact on IDD pathology and the underlying mechanism of action requires further investigation. In the present study, immunohistochemistry analysis of Nrf2 expression in the cartilage endplate (CEP) was conducted and it was demonstrated that Nrf2 expression was increased in the CEP at the early stages of the development of IDD, whereas it was decreased at the late stages of the development of IDD. The results of western blot analysis indicated that the inadequate activation of Nrf2 may aggravate mitochondrial dysfunction and oxidative stress, thus promoting CEP chondrocyte degeneration and calcification. It was also revealed that Nrf2 was involved in TNF‑α‑induced CEP chondrocyte iron metabolism dysfunction and ferroptosis. Inhibition of Nrf2 expression using Nrf2 small interfering RNA could enhance the process of nuclear receptor coactivator 4 (NCOA4)‑mediated ferritinophagy and increase ferrous ion content, which may promote CEP chondrocyte ferroptotic cell death and extracellular matrix degradation. Furthermore, a decrease in cellular iron concentration may inhibit CEP chondrocyte ferroptosis, and CEP degeneration and calcification. The present study highlights the role of the Nrf2/NCOA4 axis in chondrocyte ferroptosis and IDD pathogenesis, thus suggesting that activation of Nrf2 may be a promising strategy for IDD treatment.","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2023.5339","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Iron overload and ferroptosis are associated with intervertebral disc degeneration (IDD); however, the mechanism underlying the regulation of iron homeostasis remains to be elucidated. Nuclear factor erythroid 2‑related factor 2 (Nrf2) has been reported to regulate cellular iron homeostasis; however, its impact on IDD pathology and the underlying mechanism of action requires further investigation. In the present study, immunohistochemistry analysis of Nrf2 expression in the cartilage endplate (CEP) was conducted and it was demonstrated that Nrf2 expression was increased in the CEP at the early stages of the development of IDD, whereas it was decreased at the late stages of the development of IDD. The results of western blot analysis indicated that the inadequate activation of Nrf2 may aggravate mitochondrial dysfunction and oxidative stress, thus promoting CEP chondrocyte degeneration and calcification. It was also revealed that Nrf2 was involved in TNF‑α‑induced CEP chondrocyte iron metabolism dysfunction and ferroptosis. Inhibition of Nrf2 expression using Nrf2 small interfering RNA could enhance the process of nuclear receptor coactivator 4 (NCOA4)‑mediated ferritinophagy and increase ferrous ion content, which may promote CEP chondrocyte ferroptotic cell death and extracellular matrix degradation. Furthermore, a decrease in cellular iron concentration may inhibit CEP chondrocyte ferroptosis, and CEP degeneration and calcification. The present study highlights the role of the Nrf2/NCOA4 axis in chondrocyte ferroptosis and IDD pathogenesis, thus suggesting that activation of Nrf2 may be a promising strategy for IDD treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nrf2 通过抑制 NCOA4 介导的噬铁蛋白作用防止软骨终板退化。
铁超载和铁变态反应与椎间盘变性(IDD)有关;然而,铁稳态的调节机制仍有待阐明。有报道称核因子红细胞2相关因子2(Nrf2)可调节细胞铁稳态,但其对IDD病理的影响及其作用机制仍有待进一步研究。本研究对软骨终板(CEP)中 Nrf2 的表达进行了免疫组化分析,结果表明,在 IDD 发病早期,CEP 中 Nrf2 的表达增加,而在 IDD 发病晚期,Nrf2 的表达减少。Western印迹分析结果表明,Nrf2激活不足可能会加重线粒体功能障碍和氧化应激,从而促进CEP软骨细胞变性和钙化。研究还发现,Nrf2参与了TNF-α诱导的CEP软骨细胞铁代谢功能障碍和铁变态反应。利用Nrf2小干扰RNA抑制Nrf2的表达,可增强核受体辅激活子4(NCOA4)介导的噬铁过程,增加亚铁离子含量,从而促进CEP软骨细胞的嗜铁细胞死亡和细胞外基质降解。此外,细胞铁浓度的降低可能会抑制 CEP 软骨细胞的铁嗜性以及 CEP 的变性和钙化。本研究强调了Nrf2/NCOA4轴在软骨细胞铁凋亡和IDD发病机制中的作用,从而表明激活Nrf2可能是治疗IDD的一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of molecular medicine
International journal of molecular medicine 医学-医学:研究与实验
CiteScore
12.30
自引率
0.00%
发文量
124
审稿时长
3 months
期刊介绍: The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality. The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research. All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.
期刊最新文献
Advances in the understanding of the role and mechanism of action of PFKFB3‑mediated glycolysis in liver fibrosis (Review). [Retracted] Ubiquitin‑specific protease 4 inhibits breast cancer cell growth through the upregulation of PDCD4. FOSL1 promotes stem cell‑like characteristics and anoikis resistance to facilitate tumorigenesis and metastasis in osteosarcoma by targeting SOX2. miR‑155 promotes an inflammatory response in HaCaT cells via the IRF2BP2/KLF2/NF‑κB pathway in psoriasis. Multidisciplinary approaches to study anaemia with special mention on aplastic anaemia (Review).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1