A role for orbital eccentricity in Earth’s seasonal climate

IF 4 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geoscience Letters Pub Date : 2023-12-08 DOI:10.1186/s40562-023-00313-7
John C. H. Chiang, Anthony J. Broccoli
{"title":"A role for orbital eccentricity in Earth’s seasonal climate","authors":"John C. H. Chiang, Anthony J. Broccoli","doi":"10.1186/s40562-023-00313-7","DOIUrl":null,"url":null,"abstract":"The seasonality of Earth’s climate is driven by two factors: the tilt of the Earth’s rotation axis relative to the plane of its orbit (hereafter the tilt effect), and the variation in the Earth–Sun distance due to the Earth’s elliptical orbit around the Sun (hereafter the distance effect). The seasonal insolation change between aphelion and perihelion is only ~ 7% of the annual mean and it is thus assumed that the distance effect is not relevant for the seasons. A recent modeling study by the authors and collaborators demonstrated however that the distance effect is not small for the Pacific cold tongue: it drives an annual cycle there that is dynamically distinct and ~ 1/3 of the amplitude from the known annual cycle arising from the tilt effect. The simulations also suggest that the influence of distance effect is significant and pervasive across several other regional climates, in both the tropics and extratropics. Preliminary work suggests that the distance effect works its influence through the thermal contrast between the mostly ocean hemisphere centered on the Pacific Ocean (the ‘Marine hemisphere’) and the hemisphere opposite to it centered over Africa (the ‘Continental hemisphere’), analogous to how the tilt effect drives a contrast between the northern and southern hemispheres. We argue that the distance effect should be fully considered as an annual cycle forcing in its own right in studies of Earth’s modern seasonal cycle. Separately considering the tilt and distance effects on the Earth’s seasonal cycle provides new insights into the workings of our climate system, and of direct relevance to paleoclimate where there are outstanding questions for long-term climate changes that are related to eccentricity variations.","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":"85 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40562-023-00313-7","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The seasonality of Earth’s climate is driven by two factors: the tilt of the Earth’s rotation axis relative to the plane of its orbit (hereafter the tilt effect), and the variation in the Earth–Sun distance due to the Earth’s elliptical orbit around the Sun (hereafter the distance effect). The seasonal insolation change between aphelion and perihelion is only ~ 7% of the annual mean and it is thus assumed that the distance effect is not relevant for the seasons. A recent modeling study by the authors and collaborators demonstrated however that the distance effect is not small for the Pacific cold tongue: it drives an annual cycle there that is dynamically distinct and ~ 1/3 of the amplitude from the known annual cycle arising from the tilt effect. The simulations also suggest that the influence of distance effect is significant and pervasive across several other regional climates, in both the tropics and extratropics. Preliminary work suggests that the distance effect works its influence through the thermal contrast between the mostly ocean hemisphere centered on the Pacific Ocean (the ‘Marine hemisphere’) and the hemisphere opposite to it centered over Africa (the ‘Continental hemisphere’), analogous to how the tilt effect drives a contrast between the northern and southern hemispheres. We argue that the distance effect should be fully considered as an annual cycle forcing in its own right in studies of Earth’s modern seasonal cycle. Separately considering the tilt and distance effects on the Earth’s seasonal cycle provides new insights into the workings of our climate system, and of direct relevance to paleoclimate where there are outstanding questions for long-term climate changes that are related to eccentricity variations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轨道偏心率在地球季节性气候中的作用
地球气候的季节性由两个因素驱动:地球自转轴相对于其轨道平面的倾斜(以下简称倾斜效应),以及地球绕太阳的椭圆轨道导致的地日距离变化(以下简称距离效应)。远日点和近日点之间的季节性日照变化仅为年均值的约 7%,因此假定距离效应与季节无关。然而,作者和合作者最近的一项模拟研究表明,距离效应对太平洋冷舌的影响并不小:它在那里推动了一个在动力学上截然不同的年周期,其振幅是倾斜效应引起的已知年周期的大约 1/3。模拟结果还表明,距离效应的影响在热带和外热带的其他几个区域气候中都是显著和普遍的。初步研究表明,距离效应是通过以太平洋为中心的大洋半球("海洋半球")和与之相对的以非洲为中心的半球("大陆半球")之间的热反差产生影响的,这类似于倾斜效应如何驱动南北半球之间的反差。我们认为,在研究地球的现代季节周期时,应将距离效应本身作为一种年周期强迫因素加以充分考虑。将地球季节周期的倾角效应和距离效应分开考虑,可以让我们对气候系统的运作有新的认识,并与古气候直接相关,因为在古气候中,与偏心率变化有关的长期气候变化是一个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoscience Letters
Geoscience Letters Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍: Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.
期刊最新文献
The effectiveness of machine learning methods in the nonlinear coupled data assimilation Volcanic activity around Taipei, Taiwan: new data and perspectives on the Tatun Volcano Group A snapshot of the climate in the Middle Pleistocene inferred from a stalagmite from central Japan The crustal deformation mechanism of southern Chuandian block: constrained by S wave velocity and its azimuthal anisotropy Surface air temperature anomalies over Antarctica and the Southern ocean induced by interactions between the interdecadal Pacific oscillation and Atlantic multidecadal oscillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1