Angelina Ilić-Stepić, Zoran Ognjanović, Aleksandar Perović
{"title":"The Logic ILP for Intuitionistic Reasoning About Probability","authors":"Angelina Ilić-Stepić, Zoran Ognjanović, Aleksandar Perović","doi":"10.1007/s11225-023-10084-z","DOIUrl":null,"url":null,"abstract":"<p>We offer an alternative approach to the existing methods for intuitionistic formalization of reasoning about probability. In terms of Kripke models, each possible world is equipped with a structure of the form <span>\\(\\langle H, \\mu \\rangle \\)</span> that needs not be a probability space. More precisely, though <i>H</i> needs not be a Boolean algebra, the corresponding monotone function (we call it measure) <span>\\(\\mu : H \\longrightarrow [0,1]_{\\mathbb {Q}}\\)</span> satisfies the following condition: if <span>\\(\\alpha \\)</span>, <span>\\(\\beta \\)</span>, <span>\\(\\alpha \\wedge \\beta \\)</span>, <span>\\(\\alpha \\vee \\beta \\in H\\)</span>, then <span>\\(\\mu (\\alpha \\vee \\beta ) = \\mu (\\alpha ) + \\mu (\\beta ) - \\mu (\\alpha \\wedge \\beta )\\)</span>. Since the range of <span>\\(\\mu \\)</span> is the set <span>\\([0,1]_{\\mathbb {Q}}\\)</span> of rational numbers from the real unit interval, our logic is not compact. In order to obtain a strong complete axiomatization, we introduce an infinitary inference rule with a countable set of premises. The main technical results are the proofs of strong completeness and decidability.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-023-10084-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We offer an alternative approach to the existing methods for intuitionistic formalization of reasoning about probability. In terms of Kripke models, each possible world is equipped with a structure of the form \(\langle H, \mu \rangle \) that needs not be a probability space. More precisely, though H needs not be a Boolean algebra, the corresponding monotone function (we call it measure) \(\mu : H \longrightarrow [0,1]_{\mathbb {Q}}\) satisfies the following condition: if \(\alpha \), \(\beta \), \(\alpha \wedge \beta \), \(\alpha \vee \beta \in H\), then \(\mu (\alpha \vee \beta ) = \mu (\alpha ) + \mu (\beta ) - \mu (\alpha \wedge \beta )\). Since the range of \(\mu \) is the set \([0,1]_{\mathbb {Q}}\) of rational numbers from the real unit interval, our logic is not compact. In order to obtain a strong complete axiomatization, we introduce an infinitary inference rule with a countable set of premises. The main technical results are the proofs of strong completeness and decidability.