Residual based temporal attention convolutional neural network for detection of distributed denial of service attacks in software defined network integrated vehicular adhoc network
V. Karthik, R. Lakshmi, Salini Abraham, M. Ramkumar
{"title":"Residual based temporal attention convolutional neural network for detection of distributed denial of service attacks in software defined network integrated vehicular adhoc network","authors":"V. Karthik, R. Lakshmi, Salini Abraham, M. Ramkumar","doi":"10.1002/nem.2256","DOIUrl":null,"url":null,"abstract":"<p>Software defined network (SDN) integrated vehicular ad hoc network (VANET) is a magnificent technique for smart transportation as it raises the efficiency, safety, manageability, and comfort of traffic. SDN-integrated VANET (SDN-int-VANET) has numerous benefits, but it is susceptible to threats like distributed denial of service (DDoS). Several methods were suggested for DDoS attack detection (AD), but the existing approaches to optimization have given a base for enhancing the parameters. An incorrect selection of parameters results in a poor performance and poor fit to the data. To overcome these issues, residual-based temporal attention red fox-convolutional neural network (RTARF-CNN) for detecting DDoS attacks in SDN-int-VANET is introduced in this manuscript. The input data is taken from the SDN DDoS attack dataset. For restoring redundancy and missing value, developed random forest and local least squares (DRFLLS) are applied. Then the important features are selected from the pre-processed data with the help of stacked contractive autoencoders (St-CAE), which reduces the processing time of the introduced method. The selected features are classified by residual-based temporal attention-convolutional neural network (RTA-CNN). The weight parameter of RTA-CNN is optimized with the help of red fox optimization (RFO) for better classification. The introduced method is implemented in the PYTHON platform. The RTARF-CNN attains 99.8% accuracy, 99.5% sensitivity, 99.80% precision, and 99.8% specificity. The effectiveness of the introduced technique is compared with the existing approaches.</p>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"34 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2256","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Software defined network (SDN) integrated vehicular ad hoc network (VANET) is a magnificent technique for smart transportation as it raises the efficiency, safety, manageability, and comfort of traffic. SDN-integrated VANET (SDN-int-VANET) has numerous benefits, but it is susceptible to threats like distributed denial of service (DDoS). Several methods were suggested for DDoS attack detection (AD), but the existing approaches to optimization have given a base for enhancing the parameters. An incorrect selection of parameters results in a poor performance and poor fit to the data. To overcome these issues, residual-based temporal attention red fox-convolutional neural network (RTARF-CNN) for detecting DDoS attacks in SDN-int-VANET is introduced in this manuscript. The input data is taken from the SDN DDoS attack dataset. For restoring redundancy and missing value, developed random forest and local least squares (DRFLLS) are applied. Then the important features are selected from the pre-processed data with the help of stacked contractive autoencoders (St-CAE), which reduces the processing time of the introduced method. The selected features are classified by residual-based temporal attention-convolutional neural network (RTA-CNN). The weight parameter of RTA-CNN is optimized with the help of red fox optimization (RFO) for better classification. The introduced method is implemented in the PYTHON platform. The RTARF-CNN attains 99.8% accuracy, 99.5% sensitivity, 99.80% precision, and 99.8% specificity. The effectiveness of the introduced technique is compared with the existing approaches.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.