Bibliometric analysis of neuroscience publications quantifies the impact of data sharing

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Bioinformatics Pub Date : 2023-12-08 DOI:10.1093/bioinformatics/btad746
Herve Emissah, Bengt Ljungquist, Giorgio A Ascoli
{"title":"Bibliometric analysis of neuroscience publications quantifies the impact of data sharing","authors":"Herve Emissah, Bengt Ljungquist, Giorgio A Ascoli","doi":"10.1093/bioinformatics/btad746","DOIUrl":null,"url":null,"abstract":"Summary Neural morphology, the branching geometry of brain cells, is an essential cellular substrate of nervous system function and pathology. Despite the accelerating production of digital reconstructions of neural morphology, the public accessibility of data remains a core issue in neuroscience. Deficiencies in the availability of existing data create redundancy of research efforts and limit synergy. We carried out a comprehensive bibliometric analysis of neural morphology publications to quantify the impact of data sharing in the neuroscience community. Our findings demonstrate that sharing digital reconstructions of neural morphology via NeuroMorpho.Org leads to a significant increase of citations to the original article, thus directly benefiting authors. The rate of data reusage remains constant for at least 16 years after sharing (the whole period analyzed), altogether nearly doubling the peer-reviewed discoveries in the field. Furthermore, the recent availability of larger and more numerous datasets fostered integrative applications, which accrue on average twice the citations of re-analyses of individual datasets. We also released an open-source citation tracking web-service allowing researchers to monitor reusage of their datasets in independent peer-reviewed reports. These results and tools can facilitate the recognition of shared data reuse for merit evaluations and funding decisions. Availability and Implementation The application is available at: http://cng-nmo-dev3.orc.gmu.edu:8181/. The source code at https://github.com/HerveEmissah/nmo-authors-app and https://github.com/HerveEmissah/nmo-bibliometric-analysis. Supplementary information Supplementary data are available at Bioinformatics online.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"7 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad746","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Summary Neural morphology, the branching geometry of brain cells, is an essential cellular substrate of nervous system function and pathology. Despite the accelerating production of digital reconstructions of neural morphology, the public accessibility of data remains a core issue in neuroscience. Deficiencies in the availability of existing data create redundancy of research efforts and limit synergy. We carried out a comprehensive bibliometric analysis of neural morphology publications to quantify the impact of data sharing in the neuroscience community. Our findings demonstrate that sharing digital reconstructions of neural morphology via NeuroMorpho.Org leads to a significant increase of citations to the original article, thus directly benefiting authors. The rate of data reusage remains constant for at least 16 years after sharing (the whole period analyzed), altogether nearly doubling the peer-reviewed discoveries in the field. Furthermore, the recent availability of larger and more numerous datasets fostered integrative applications, which accrue on average twice the citations of re-analyses of individual datasets. We also released an open-source citation tracking web-service allowing researchers to monitor reusage of their datasets in independent peer-reviewed reports. These results and tools can facilitate the recognition of shared data reuse for merit evaluations and funding decisions. Availability and Implementation The application is available at: http://cng-nmo-dev3.orc.gmu.edu:8181/. The source code at https://github.com/HerveEmissah/nmo-authors-app and https://github.com/HerveEmissah/nmo-bibliometric-analysis. Supplementary information Supplementary data are available at Bioinformatics online.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经科学出版物的文献计量分析量化了数据共享的影响
摘要 神经形态,即脑细胞的分支几何形态,是神经系统功能和病理的重要细胞基质。尽管神经形态学数字重建技术的发展日新月异,但数据的公开获取仍然是神经科学领域的核心问题。现有数据可用性的不足造成了研究工作的重复,限制了协同作用的发挥。我们对神经形态学出版物进行了全面的文献计量分析,以量化数据共享对神经科学界的影响。我们的研究结果表明,通过 NeuroMorpho.Org 共享神经形态学的数字重构会显著增加原始文章的引用率,从而使作者直接受益。数据重用率在共享后至少 16 年内(整个分析期间)保持不变,使该领域经同行评审的发现增加了近一倍。此外,近期更大、更多数据集的出现促进了综合应用,其平均引用率是对单个数据集进行再分析的引用率的两倍。我们还发布了一个开源引文跟踪网络服务,允许研究人员监测其数据集在独立同行评议报告中的再利用情况。这些结果和工具可促进对共享数据再利用的认可,从而有助于评优和资金决策。可用性和实施 应用程序可从以下网址获取:http://cng-nmo-dev3.orc.gmu.edu:8181/。源代码可从以下网址获取:https://github.com/HerveEmissah/nmo-authors-app 和 https://github.com/HerveEmissah/nmo-bibliometric-analysis。补充信息 补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
期刊最新文献
MEHunter: Transformer-based mobile element variant detection from long reads Metabolic syndrome may be more frequent in treatment-naive sarcoidosis patients. Coracle—A Machine Learning Framework to Identify Bacteria Associated with Continuous Variables CoSIA: an R Bioconductor package for CrOss Species Investigation and Analysis LncLocFormer: a Transformer-based deep learning model for multi-label lncRNA subcellular localization prediction by using localization-specific attention mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1