{"title":"Application of machine learning models in groundwater quality assessment and prediction: progress and challenges","authors":"Yanpeng Huang, Chao Wang, Yuanhao Wang, Guangfeng Lyu, Sijie Lin, Weijiang Liu, Haobo Niu, Qing Hu","doi":"10.1007/s11783-024-1789-2","DOIUrl":null,"url":null,"abstract":"<p>Groundwater quality assessment and prediction (GQAP) is vital for protecting groundwater resources. Traditional GQAP methods can not adequately capture the complex relationships among attributes and have the disadvantage of being computationally demanding. Recently, the application of machine learning (ML) in GAQP (GQAPxML) has been widely studied due to ML’s reliability and efficiency. While many GQAPxML publications exist, a thorough review is missing. This review provides a comprehensive summary of the development of ML applications in the field of GQAP. First, the workflow of ML modeling is briefly introduced, as are data preparation, model development, model evaluation, and model application. Second, 299 publications related to the topic are filtered, mainly through ML modeling. Subsequently, many aspects of GQAPxML, such as publication trends, the spatial distribution of study areas, the size of data sets, and ML algorithms, are discussed from a bibliometric perspective. In addition, we review in detail the well-established applications and recent findings for several subtopics, including groundwater quality assessment, groundwater quality modeling using groundwater quality parameters, groundwater quality spatial mapping, probability estimation of exceeding the groundwater quality threshold, groundwater quality temporal prediction, and the hybrid use of ML and physics-based models. Finally, the development of GQAPxML is explored from three perspectives: data collection and preprocessing, model building and evaluation, and the broadening of model applications. This review provides a reference for environmental scientists to better understand GQAPxML and promotes the development of innovative methods and improvements in modeling quality.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1789-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Groundwater quality assessment and prediction (GQAP) is vital for protecting groundwater resources. Traditional GQAP methods can not adequately capture the complex relationships among attributes and have the disadvantage of being computationally demanding. Recently, the application of machine learning (ML) in GAQP (GQAPxML) has been widely studied due to ML’s reliability and efficiency. While many GQAPxML publications exist, a thorough review is missing. This review provides a comprehensive summary of the development of ML applications in the field of GQAP. First, the workflow of ML modeling is briefly introduced, as are data preparation, model development, model evaluation, and model application. Second, 299 publications related to the topic are filtered, mainly through ML modeling. Subsequently, many aspects of GQAPxML, such as publication trends, the spatial distribution of study areas, the size of data sets, and ML algorithms, are discussed from a bibliometric perspective. In addition, we review in detail the well-established applications and recent findings for several subtopics, including groundwater quality assessment, groundwater quality modeling using groundwater quality parameters, groundwater quality spatial mapping, probability estimation of exceeding the groundwater quality threshold, groundwater quality temporal prediction, and the hybrid use of ML and physics-based models. Finally, the development of GQAPxML is explored from three perspectives: data collection and preprocessing, model building and evaluation, and the broadening of model applications. This review provides a reference for environmental scientists to better understand GQAPxML and promotes the development of innovative methods and improvements in modeling quality.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.