Soybean genetics, genomics, and breeding for improving nutritional value and reducing antinutritional traits in food and feed

William M. Singer, Yi-Chen Lee, Zachary Shea, Caio Canella Vieira, Dongho Lee, Xiaoying Li, Mia Cunicelli, Shaila S. Kadam, Mohammad Aamir Waseem Khan, Grover Shannon, M. A. Rouf Mian, Henry T. Nguyen, Bo Zhang
{"title":"Soybean genetics, genomics, and breeding for improving nutritional value and reducing antinutritional traits in food and feed","authors":"William M. Singer, Yi-Chen Lee, Zachary Shea, Caio Canella Vieira, Dongho Lee, Xiaoying Li, Mia Cunicelli, Shaila S. Kadam, Mohammad Aamir Waseem Khan, Grover Shannon, M. A. Rouf Mian, Henry T. Nguyen, Bo Zhang","doi":"10.1002/tpg2.20415","DOIUrl":null,"url":null,"abstract":"Soybean [<i>Glycine max</i> (L.) Merr.] is a globally important crop due to its valuable seed composition, versatile feed, food, and industrial end-uses, and consistent genetic gain. Successful genetic gain in soybean has led to widespread adaptation and increased value for producers, processors, and consumers. Specific focus on the nutritional quality of soybean seed composition for food and feed has further elucidated genetic knowledge and bolstered breeding progress. Seed components are historical and current targets for soybean breeders seeking to improve nutritional quality of soybean. This article reviews genetic and genomic foundations for improvement of nutritionally important traits, such as protein and amino acids, oil and fatty acids, carbohydrates, and specific food-grade considerations; discusses the application of advanced breeding technology such as CRISPR/Cas9 in creating seed composition variations; and provides future directions and breeding recommendations regarding soybean seed composition traits.","PeriodicalId":501653,"journal":{"name":"The Plant Genome","volume":"195 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Genome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/tpg2.20415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Soybean [Glycine max (L.) Merr.] is a globally important crop due to its valuable seed composition, versatile feed, food, and industrial end-uses, and consistent genetic gain. Successful genetic gain in soybean has led to widespread adaptation and increased value for producers, processors, and consumers. Specific focus on the nutritional quality of soybean seed composition for food and feed has further elucidated genetic knowledge and bolstered breeding progress. Seed components are historical and current targets for soybean breeders seeking to improve nutritional quality of soybean. This article reviews genetic and genomic foundations for improvement of nutritionally important traits, such as protein and amino acids, oil and fatty acids, carbohydrates, and specific food-grade considerations; discusses the application of advanced breeding technology such as CRISPR/Cas9 in creating seed composition variations; and provides future directions and breeding recommendations regarding soybean seed composition traits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大豆遗传学、基因组学和育种,以提高营养价值并减少食品和饲料中的抗营养性状
大豆[Glycine max (L.) Merr.]因其宝贵的种子成分、多种饲料、食品和工业最终用途以及持续的遗传增益而成为全球重要的作物。大豆基因增殖的成功使其适应性广泛,并为生产者、加工商和消费者带来更多价值。对用于食品和饲料的大豆种子成分的营养质量的特别关注,进一步阐明了遗传知识并促进了育种进展。种子成分是大豆育种者寻求提高大豆营养质量的历史和当前目标。本文回顾了蛋白质和氨基酸、油脂和脂肪酸、碳水化合物等重要营养性状改良的遗传和基因组基础,以及特定食品级考虑因素;讨论了 CRISPR/Cas9 等先进育种技术在创造种子成分变异中的应用;并提供了有关大豆种子成分性状的未来方向和育种建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deciphering the genetic basis of novel traits that discriminate useful and non-useful biomass to enhance harvest index in wheat. Functional characterization of protein SUMOylation in the miRNA transcription regulation during heat stress in Arabidopsis Genome‐wide association mapping reveals novel genes and genomic regions controlling root‐lesion nematode resistance in chickpea mini core collection Genomic prediction for potato (Solanum tuberosum) quality traits improved through image analysis Multi‐locus genome‐wide association study for grain yield and drought tolerance indices in sorghum accessions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1