{"title":"A Machine Learning and Data Assimilation forecasting framework for surface waves","authors":"Pujan Pokhrel, Mahdi Abdelguerfi, Elias Ioup","doi":"10.1002/qj.4631","DOIUrl":null,"url":null,"abstract":"In this paper, we combine Deep symbolic regression (DSR) and Ensemble Optimal Interpolation-based Data Assimilation (DA) method to correct the error in the forecasts from the numerical model, WaveWatch III. In our experiments, the DA and DSR training is performed on the hindcasts and then the model is integrated forward in time with both the numerical model and the symbolic expressions generated from the DSR procedure to generate the forecasts. The DSR method is utilized in this paper to generate the symbolic equations that correct the model error in the WaveWatch III/ DA system. The proposed algorithm takes the zonal (u) and meridional (v) wind components from Global Forecast System (GFS) forecasts, wave heights from WaveWatch III, and geographical coordinates (latitude and longitude) to model physical relationships not included in the original numerical model. The DA is performed using JASON-2 and SARAL altimeter measurements, and the independent testing uses the in situ buoys The RMSD of the proposed method is better than the numerical model with/without DA for up to 42 hours with only 12 days of assimilation spin-up cycle. The symbolic equation generated from the proposed framework can be used to correct the predictions from WaveWatch III for weather prediction.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":"104 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4631","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we combine Deep symbolic regression (DSR) and Ensemble Optimal Interpolation-based Data Assimilation (DA) method to correct the error in the forecasts from the numerical model, WaveWatch III. In our experiments, the DA and DSR training is performed on the hindcasts and then the model is integrated forward in time with both the numerical model and the symbolic expressions generated from the DSR procedure to generate the forecasts. The DSR method is utilized in this paper to generate the symbolic equations that correct the model error in the WaveWatch III/ DA system. The proposed algorithm takes the zonal (u) and meridional (v) wind components from Global Forecast System (GFS) forecasts, wave heights from WaveWatch III, and geographical coordinates (latitude and longitude) to model physical relationships not included in the original numerical model. The DA is performed using JASON-2 and SARAL altimeter measurements, and the independent testing uses the in situ buoys The RMSD of the proposed method is better than the numerical model with/without DA for up to 42 hours with only 12 days of assimilation spin-up cycle. The symbolic equation generated from the proposed framework can be used to correct the predictions from WaveWatch III for weather prediction.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.