Event-Triggered Adaptive Neural Control for Full State-Constrained Nonlinear Systems with Unknown Disturbances

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Computation Pub Date : 2023-12-12 DOI:10.1007/s12559-023-10223-7
Ziming Wang, Hui Wang, Xin Wang, Ning Pang, Quan Shi
{"title":"Event-Triggered Adaptive Neural Control for Full State-Constrained Nonlinear Systems with Unknown Disturbances","authors":"Ziming Wang, Hui Wang, Xin Wang, Ning Pang, Quan Shi","doi":"10.1007/s12559-023-10223-7","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the adaptive control issue for a class of uncertain nonlinear systems subject to full state constraints and external disturbance. A novel adaptive nonlinear observer is proposed to compensate for disturbance variables in the transformed system. Combining with radial basis function neural networks (RBFNNs) and nonlinear mapping (NM) mechanism, the constrained system is transformed into an unconstrained form and the system uncertainties are effectively handled. Besides that, an adaptive tracking control approach is formulated by invoking backstepping techniques and the event-sampled scheme is utilized to address the sparsity of resources. The adaptive control problem can be addressed with the proposed algorithm, applying the Lyapunov functions, RBF NNs theory, and inequality techniques. Based on the Lyapunov stability theory, it is proved that the system can never violate the specified state constraints and all the closed-loop signals are semiglobally uniformly ultimately bounded (SGUUB). The validity of the proposed approach is well illustrated by a developed numerical example.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"7 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-023-10223-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the adaptive control issue for a class of uncertain nonlinear systems subject to full state constraints and external disturbance. A novel adaptive nonlinear observer is proposed to compensate for disturbance variables in the transformed system. Combining with radial basis function neural networks (RBFNNs) and nonlinear mapping (NM) mechanism, the constrained system is transformed into an unconstrained form and the system uncertainties are effectively handled. Besides that, an adaptive tracking control approach is formulated by invoking backstepping techniques and the event-sampled scheme is utilized to address the sparsity of resources. The adaptive control problem can be addressed with the proposed algorithm, applying the Lyapunov functions, RBF NNs theory, and inequality techniques. Based on the Lyapunov stability theory, it is proved that the system can never violate the specified state constraints and all the closed-loop signals are semiglobally uniformly ultimately bounded (SGUUB). The validity of the proposed approach is well illustrated by a developed numerical example.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有未知扰动的全状态约束非线性系统的事件触发自适应神经控制
本文重点讨论了一类受完全状态约束和外部干扰影响的不确定非线性系统的自适应控制问题。本文提出了一种新型自适应非线性观测器,用于补偿变换系统中的干扰变量。结合径向基函数神经网络(RBFNN)和非线性映射(NM)机制,有约束系统被转化为无约束形式,系统的不确定性得到有效处理。此外,还利用反步进技术制定了一种自适应跟踪控制方法,并利用事件采样方案来解决资源稀缺问题。利用所提出的算法,应用 Lyapunov 函数、RBF NNs 理论和不等式技术,可以解决自适应控制问题。基于 Lyapunov 稳定性理论,证明了系统永远不会违反指定的状态约束,并且所有闭环信号都是半全局均匀最终有界的(SGUUB)。通过一个开发的数值示例很好地说明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Computation
Cognitive Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-NEUROSCIENCES
CiteScore
9.30
自引率
3.70%
发文量
116
审稿时长
>12 weeks
期刊介绍: Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.
期刊最新文献
A Joint Network for Low-Light Image Enhancement Based on Retinex Incorporating Template-Based Contrastive Learning into Cognitively Inspired, Low-Resource Relation Extraction A Novel Cognitive Rough Approach for Severity Analysis of Autistic Children Using Spherical Fuzzy Bipolar Soft Sets Cognitively Inspired Three-Way Decision Making and Bi-Level Evolutionary Optimization for Mobile Cybersecurity Threats Detection: A Case Study on Android Malware Probing Fundamental Visual Comprehend Capabilities on Vision Language Models via Visual Phrases from Structural Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1