Improved error estimates of the time-splitting methods for the long-time dynamics of the Klein–Gordon–Dirac system with the small coupling constant

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-12-11 DOI:10.1002/num.23084
Jiyong Li
{"title":"Improved error estimates of the time-splitting methods for the long-time dynamics of the Klein–Gordon–Dirac system with the small coupling constant","authors":"Jiyong Li","doi":"10.1002/num.23084","DOIUrl":null,"url":null,"abstract":"We provide improved uniform error estimates for the time-splitting Fourier pseudo-spectral (TSFP) methods applied to the Klein–Gordon–Dirac system (KGDS) with the small parameter <mjx-container ctxtmenu_counter=\"0\" jax=\"CHTML\" style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" data-semantic-complexity=\"5.5\" location=\"graphic/num23084-math-0001.png\"><mjx-semantics data-semantic-complexity=\"5.5\"><mjx-maction data-collapsible=\"true\" data-semantic-complexity=\"1.5\" toggle=\"2\"><mjx-mrow data-semantic-children=\"0,8\" data-semantic-complexity=\"16\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"element\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"9\" data-semantic-role=\"element\" data-semantic-type=\"operator\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"7\" data-semantic-complexity=\"11\" data-semantic-content=\"2,6\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"3,4,5\" data-semantic-complexity=\"6\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-maction></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:num:media:num23084:num23084-math-0001\" data-semantic-complexity=\"5.5\" display=\"inline\" location=\"graphic/num23084-math-0001.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics data-semantic-complexity=\"5.5\"><maction actiontype=\"toggle\" data-collapsible=\"true\" data-semantic-complexity=\"1.5\" selection=\"2\"><mtext mathcolor=\"blue\">◂+▸</mtext><mrow data-semantic-=\"\" data-semantic-children=\"0,8\" data-semantic-complexity=\"16\" data-semantic-content=\"1\" data-semantic-role=\"element\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ε</mi><mo data-semantic-=\"\" data-semantic-complexity=\"1\" data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"9\" data-semantic-role=\"element\" data-semantic-type=\"operator\">∈</mo><mrow data-semantic-=\"\" data-semantic-children=\"7\" data-semantic-complexity=\"11\" data-semantic-content=\"2,6\" data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-complexity=\"1\" data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"3,4,5\" data-semantic-complexity=\"6\" data-semantic-content=\"4\" data-semantic-parent=\"8\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn><mo data-semantic-=\"\" data-semantic-complexity=\"1\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow><mo data-semantic-=\"\" data-semantic-complexity=\"1\" data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">]</mo></mrow></mrow></maction>$$ \\varepsilon \\in \\left(0,1\\right] $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. We first reformulate the KGDS into a coupled Schrödinger–Dirac system (CSDS) and then apply the second-order Strang splitting method to CSDS with the spatial discretization provided by Fourier pseudo-spectral method. Based on rigorous analysis, we establish improved uniform error bounds for the second-order Strang splitting method at <mjx-container ctxtmenu_counter=\"1\" jax=\"CHTML\" style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" data-semantic-complexity=\"11\" location=\"graphic/num23084-math-0002.png\"><mjx-semantics data-semantic-complexity=\"11\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,17\" data-semantic-complexity=\"7\" data-semantic-content=\"18\" data-semantic- data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"19\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-maction data-collapsible=\"true\" data-semantic-complexity=\"2\" toggle=\"2\"><mjx-mrow data-semantic-children=\"16\" data-semantic-complexity=\"21.8\" data-semantic-content=\"1,13\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"17\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"7,15\" data-semantic-complexity=\"16.8\" data-semantic-content=\"8\" data-semantic- data-semantic-parent=\"17\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\"><mjx-maction data-collapsible=\"true\" data-semantic-complexity=\"2\" toggle=\"2\"><mjx-msup data-semantic-children=\"2,6\" data-semantic-complexity=\"9.8\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mrow data-semantic-complexity=\"1\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mrow data-semantic-children=\"3,5\" data-semantic-complexity=\"6\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"6\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-maction><mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"16\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" rspace=\"4\" space=\"4\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"9,12\" data-semantic-complexity=\"10.8\" data-semantic-content=\"14\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children=\"10,11\" data-semantic-complexity=\"5.8\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"greekletter\" data-semantic-type=\"superscript\"><mjx-mrow data-semantic-complexity=\"1\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: 0.363em; margin-left: 0.054em;\"><mjx-mrow data-semantic-complexity=\"1\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-mrow><mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"17\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-maction></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:num:media:num23084:num23084-math-0002\" data-semantic-complexity=\"11\" display=\"inline\" location=\"graphic/num23084-math-0002.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics data-semantic-complexity=\"11\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,17\" data-semantic-complexity=\"7\" data-semantic-content=\"18\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic-parent=\"19\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">O</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-complexity=\"1\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"19\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><maction actiontype=\"toggle\" data-collapsible=\"true\" data-semantic-complexity=\"2\" selection=\"2\"><mtext mathcolor=\"blue\">◂()▸</mtext><mrow data-semantic-=\"\" data-semantic-children=\"16\" data-semantic-complexity=\"21.8\" data-semantic-content=\"1,13\" data-semantic-parent=\"19\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-complexity=\"1\" data-semantic-operator=\"fenced\" data-semantic-parent=\"17\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"7,15\" data-semantic-complexity=\"16.8\" data-semantic-content=\"8\" data-semantic-parent=\"17\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\"><maction actiontype=\"toggle\" data-collapsible=\"true\" data-semantic-complexity=\"2\" selection=\"2\"><mtext mathcolor=\"blue\">◂◽˙▸</mtext><msup data-semantic-=\"\" data-semantic-children=\"2,6\" data-semantic-complexity=\"9.8\" data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mrow data-semantic-complexity=\"1\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">h</mi></mrow><mrow data-semantic-=\"\" data-semantic-children=\"3,5\" data-semantic-complexity=\"6\" data-semantic-content=\"4\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">m</mi><mo data-semantic-=\"\" data-semantic-complexity=\"1\" data-semantic-operator=\"infixop,−\" data-semantic-parent=\"6\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" form=\"prefix\">−</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"normal\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow></msup></maction><mo data-semantic-=\"\" data-semantic-complexity=\"1\" data-semantic-operator=\"infixop,+\" data-semantic-parent=\"16\" data-semantic-role=\"addition\" data-semantic-type=\"operator\">+</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"9,12\" data-semantic-complexity=\"10.8\" data-semantic-content=\"14\" data-semantic-parent=\"16\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic-parent=\"15\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ε</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-complexity=\"1\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><msup data-semantic-=\"\" data-semantic-children=\"10,11\" data-semantic-complexity=\"5.8\" data-semantic-parent=\"15\" data-semantic-role=\"greekletter\" data-semantic-type=\"superscript\"><mrow data-semantic-complexity=\"1\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic-parent=\"12\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">τ</mi></mrow><mrow data-semantic-complexity=\"1\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"normal\" data-semantic-parent=\"12\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></mrow></msup></mrow></mrow><mo data-semantic-=\"\" data-semantic-complexity=\"1\" data-semantic-operator=\"fenced\" data-semantic-parent=\"17\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></maction></mrow>$$ O\\left({h}^{m-1}+\\varepsilon {\\tau}^2\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> up to the long time at <mjx-container ctxtmenu_counter=\"2\" jax=\"CHTML\" style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" data-semantic-complexity=\"5.5\" location=\"graphic/num23084-math-0003.png\"><mjx-semantics data-semantic-complexity=\"5.5\"><mjx-maction data-collapsible=\"true\" data-semantic-complexity=\"1.5\" toggle=\"2\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,7\" data-semantic-complexity=\"16\" data-semantic-content=\"8\" data-semantic- data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"6\" data-semantic-complexity=\"11\" data-semantic-content=\"1,5\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2,4\" data-semantic-complexity=\"6\" data-semantic-content=\"3\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-maction></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:num:media:num23084:num23084-math-0003\" data-semantic-complexity=\"5.5\" display=\"inline\" location=\"graphic/num23084-math-0003.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics data-semantic-complexity=\"5.5\"><maction actiontype=\"toggle\" data-collapsible=\"true\" data-semantic-complexity=\"1.5\" selection=\"2\"><mtext mathcolor=\"blue\">◂⋅▸</mtext><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,7\" data-semantic-complexity=\"16\" data-semantic-content=\"8\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">O</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-complexity=\"1\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mrow data-semantic-=\"\" data-semantic-children=\"6\" data-semantic-complexity=\"11\" data-semantic-content=\"1,5\" data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-complexity=\"1\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"2,4\" data-semantic-complexity=\"6\" data-semantic-content=\"3\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"normal\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><mo data-semantic-=\"\" data-semantic-complexity=\"1\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"operator\" stretchy=\"false\">/</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ε</mi></mrow><mo data-semantic-=\"\" data-semantic-complexity=\"1\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow></maction>$$ O\\left(1/\\varepsilon \\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. In addition to the conventional analysis methods, we mainly apply the regularity compensation oscillation technique for the analysis of long time dynamic simulation. The numerical results show that our method and conclusion are not only suitable for one-dimensional problem, but also can be directly extended to higher dimensional problem and highly oscillatory problem. As far as we know there has not been any relevant long time analysis and any improved uniform error bounds for the TSFP method solving the KGDS. Our methods are novel and provides a reference for analyzing the improved error bounds of other coupled systems similar to the KGDS.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide improved uniform error estimates for the time-splitting Fourier pseudo-spectral (TSFP) methods applied to the Klein–Gordon–Dirac system (KGDS) with the small parameter ◂+▸ε(0,1]$$ \varepsilon \in \left(0,1\right] $$. We first reformulate the KGDS into a coupled Schrödinger–Dirac system (CSDS) and then apply the second-order Strang splitting method to CSDS with the spatial discretization provided by Fourier pseudo-spectral method. Based on rigorous analysis, we establish improved uniform error bounds for the second-order Strang splitting method at O◂()▸(◂◽˙▸hm1+ετ2)$$ O\left({h}^{m-1}+\varepsilon {\tau}^2\right) $$ up to the long time at ◂⋅▸O(1/ε)$$ O\left(1/\varepsilon \right) $$. In addition to the conventional analysis methods, we mainly apply the regularity compensation oscillation technique for the analysis of long time dynamic simulation. The numerical results show that our method and conclusion are not only suitable for one-dimensional problem, but also can be directly extended to higher dimensional problem and highly oscillatory problem. As far as we know there has not been any relevant long time analysis and any improved uniform error bounds for the TSFP method solving the KGDS. Our methods are novel and provides a reference for analyzing the improved error bounds of other coupled systems similar to the KGDS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有小耦合常数的克莱因-戈登-狄拉克系统长时动力学时间分割方法的改进误差估计
我们为应用于具有小参数◂+▸ε∈(0,1]$$ \varepsilon \in \left(0,1\right] $$$的Klein-Gordon-Dirac系统(KGDS)的时间分裂傅立叶伪谱(TSFP)方法提供了改进的均匀误差估计。我们首先将 KGDS 重述为耦合薛定谔-狄拉克系统(CSDS),然后将二阶斯特朗分裂法应用于 CSDS,并用傅立叶伪谱法提供空间离散化。基于严格的分析、我们建立了二阶斯特朗分裂法在 O◂()▸(◂◽˙▸hm-1+ετ2)$$ O\left({h}^{m-1}+\varepsilon {\tau}^2\right) $$ 直到 ◂⋅▸O(1/ε)$$ O\left(1/\varepsilon \right) $$ 的长时。除常规分析方法外,我们主要应用正则补偿振荡技术进行长时间动态模拟分析。数值结果表明,我们的方法和结论不仅适用于一维问题,而且可以直接扩展到高维问题和高振荡问题。据我们所知,目前还没有针对求解 KGDS 的 TSFP 方法的相关长时间分析和改进的均匀误差边界。我们的方法很新颖,为分析类似 KGDS 的其他耦合系统的改进误差边界提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1