PDBImages: A Command Line Tool for Automated Macromolecular Structure Visualization

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Bioinformatics Pub Date : 2023-12-12 DOI:10.1093/bioinformatics/btad744
Adam Midlik, Sreenath Nair, Stephen Anyango, Mandar Deshpande, David Sehnal, Mihaly Varadi, Sameer Velankar
{"title":"PDBImages: A Command Line Tool for Automated Macromolecular Structure Visualization","authors":"Adam Midlik, Sreenath Nair, Stephen Anyango, Mandar Deshpande, David Sehnal, Mihaly Varadi, Sameer Velankar","doi":"10.1093/bioinformatics/btad744","DOIUrl":null,"url":null,"abstract":"Summary PDBImages is an innovative, open-source Node.js package that harnesses the power of the popular macromolecule structure visualization software Mol*. Designed for use by the scientific community, PDBImages provides a means to generate high-quality images for PDB and AlphaFold DB models. Its unique ability to render and save images directly to files in a browserless mode sets it apart, offering users a streamlined, automated process for macromolecular structure visualization. Here, we detail the implementation of PDBImages, enumerating its diverse image types and elaborating on its user-friendly setup. This powerful tool opens a new gateway for researchers to visualize, analyse, and share their work, fostering a deeper understanding of bioinformatics. Availability and Implementation PDBImages is available as an npm package from https://www.npmjs.com/package/pdb-images. The source code is available from https://github.com/PDBeurope/pdb-images.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad744","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Summary PDBImages is an innovative, open-source Node.js package that harnesses the power of the popular macromolecule structure visualization software Mol*. Designed for use by the scientific community, PDBImages provides a means to generate high-quality images for PDB and AlphaFold DB models. Its unique ability to render and save images directly to files in a browserless mode sets it apart, offering users a streamlined, automated process for macromolecular structure visualization. Here, we detail the implementation of PDBImages, enumerating its diverse image types and elaborating on its user-friendly setup. This powerful tool opens a new gateway for researchers to visualize, analyse, and share their work, fostering a deeper understanding of bioinformatics. Availability and Implementation PDBImages is available as an npm package from https://www.npmjs.com/package/pdb-images. The source code is available from https://github.com/PDBeurope/pdb-images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PDBImages:自动化大分子结构可视化的命令行工具
摘要 PDBImages 是一个创新的开源 Node.js 软件包,它利用了流行的大分子结构可视化软件 Mol* 的强大功能。PDBImages 专为科学界设计,提供了一种为 PDB 和 AlphaFold DB 模型生成高质量图像的方法。PDBImages 能以无浏览器模式直接渲染图像并将其保存到文件中,这种独特的功能使其与众不同,为用户提供了简化、自动化的大分子结构可视化流程。在此,我们将详细介绍 PDBImages 的实现过程,列举其多种图像类型,并详细说明其用户友好型设置。这一功能强大的工具为研究人员可视化、分析和共享他们的工作开辟了新的途径,促进了对生物信息学的深入理解。可用性与实现 PDBImages 作为 npm 软件包可从 https://www.npmjs.com/package/pdb-images 获取。源代码可从 https://github.com/PDBeurope/pdb-images 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
期刊最新文献
MEHunter: Transformer-based mobile element variant detection from long reads PQSDC: a parallel lossless compressor for quality scores data via sequences partition and Run-Length prediction mapping. MUSE-XAE: MUtational Signature Extraction with eXplainable AutoEncoder enhances tumour types classification. CopyVAE: a variational autoencoder-based approach for copy number variation inference using single-cell transcriptomics CORDAX web server: An online platform for the prediction and 3D visualization of aggregation motifs in protein sequences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1