Long-term exposure to food-grade disinfectants causes cross-resistance to antibiotics in Salmonella enterica serovar Typhimurium strains with different antibiograms and sequence types
Ricardo A. Wu-Chen, Jinsong Feng, Mohamed Elhadidy, Reshma B. Nambiar, Xinyu Liao, Min Yue, Tian Ding
{"title":"Long-term exposure to food-grade disinfectants causes cross-resistance to antibiotics in Salmonella enterica serovar Typhimurium strains with different antibiograms and sequence types","authors":"Ricardo A. Wu-Chen, Jinsong Feng, Mohamed Elhadidy, Reshma B. Nambiar, Xinyu Liao, Min Yue, Tian Ding","doi":"10.1186/s13756-023-01333-w","DOIUrl":null,"url":null,"abstract":"Disinfectants are important in the food industry to prevent the transmission of pathogens. Excessive use of disinfectants may increase the probability of bacteria experiencing long-term exposure and consequently resistance and cross-resistance to antibiotics. This study aims to investigate the cross-resistance of multidrug-resistant, drug-resistant, and drug-susceptible isolates of Salmonella enterica serovar Typhimurium (S. Typhimurium) with different sequence types (STs) to a group of antibiotics after exposure to different food-grade disinfectants. A panel of 27 S. Typhimurium strains with different antibiograms and STs were exposed to increasing concentrations of five food-grade disinfectants, including hydrogen peroxide (H2O2), benzalkonium chloride (BAC), chlorine dioxide (ClO2), sodium hypochlorite (NaClO), and ethanol. Recovered evolved strains were analyzed using genomic tools and phenotypic tests. Genetic mutations were screened using breseq pipeline and changes in resistance to antibiotics and to the same disinfectant were determined. The relative fitness of evolved strains was also determined. Following exposure to disinfectants, 22 out of 135 evolved strains increased their resistance to antibiotics from a group of 14 clinically important antibiotics. The results also showed that 9 out of 135 evolved strains had decreased resistance to some antibiotics. Genetic mutations were found in evolved strains. A total of 77.78% of ST34, 58.33% of ST19, and 66.67% of the other STs strains exhibited changes in antibiotic resistance. BAC was the disinfectant that induced the highest number of strains to cross-resistance to antibiotics. Besides, H2O2 induced the highest number of strains with decreased resistance to antibiotics. These findings provide a basis for understanding the effect of disinfectants on the antibiotic resistance of S. Typhimurium. This work highlights the link between long-term exposure to disinfectants and the evolution of resistance to antibiotics and provides evidence to promote the regulated use of disinfectants.","PeriodicalId":501612,"journal":{"name":"Antimicrobial Resistance & Infection Control","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Resistance & Infection Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13756-023-01333-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Disinfectants are important in the food industry to prevent the transmission of pathogens. Excessive use of disinfectants may increase the probability of bacteria experiencing long-term exposure and consequently resistance and cross-resistance to antibiotics. This study aims to investigate the cross-resistance of multidrug-resistant, drug-resistant, and drug-susceptible isolates of Salmonella enterica serovar Typhimurium (S. Typhimurium) with different sequence types (STs) to a group of antibiotics after exposure to different food-grade disinfectants. A panel of 27 S. Typhimurium strains with different antibiograms and STs were exposed to increasing concentrations of five food-grade disinfectants, including hydrogen peroxide (H2O2), benzalkonium chloride (BAC), chlorine dioxide (ClO2), sodium hypochlorite (NaClO), and ethanol. Recovered evolved strains were analyzed using genomic tools and phenotypic tests. Genetic mutations were screened using breseq pipeline and changes in resistance to antibiotics and to the same disinfectant were determined. The relative fitness of evolved strains was also determined. Following exposure to disinfectants, 22 out of 135 evolved strains increased their resistance to antibiotics from a group of 14 clinically important antibiotics. The results also showed that 9 out of 135 evolved strains had decreased resistance to some antibiotics. Genetic mutations were found in evolved strains. A total of 77.78% of ST34, 58.33% of ST19, and 66.67% of the other STs strains exhibited changes in antibiotic resistance. BAC was the disinfectant that induced the highest number of strains to cross-resistance to antibiotics. Besides, H2O2 induced the highest number of strains with decreased resistance to antibiotics. These findings provide a basis for understanding the effect of disinfectants on the antibiotic resistance of S. Typhimurium. This work highlights the link between long-term exposure to disinfectants and the evolution of resistance to antibiotics and provides evidence to promote the regulated use of disinfectants.