A Chaotic Multi-Objective Runge–Kutta Optimization Algorithm for Optimized Circuit Design

4区 工程技术 Q1 Mathematics Mathematical Problems in Engineering Pub Date : 2023-12-07 DOI:10.1155/2023/6691214
Owen M. Nyandieka, Davies R. Segera
{"title":"A Chaotic Multi-Objective Runge–Kutta Optimization Algorithm for Optimized Circuit Design","authors":"Owen M. Nyandieka, Davies R. Segera","doi":"10.1155/2023/6691214","DOIUrl":null,"url":null,"abstract":"Circuit design plays a pivotal role in engineering, ensuring the creation of efficient, reliable, and cost-effective electronic devices. The complexity of modern circuit design problems has led to the exploration of multi-objective optimization techniques for circuit design optimization, as traditional optimization tools fall short in handling such problems. While metaheuristic algorithms, especially genetic algorithms, have demonstrated promise, their susceptibility to premature convergence poses challenges. This paper proposes a pioneering approach, the chaotic multi-objective Runge–Kutta algorithm (CMRUN), for circuit design optimization, building upon the Runge–Kutta optimization algorithm. By infusing chaos into the core RUN structure, a refined balance between exploration and exploitation is obtained, critical for addressing complex optimization landscapes, enabling the algorithm to navigate nonlinear and nonconvex optimization challenges effectively. This approach is extended to accommodate multiple objectives, ultimately generating Pareto Fronts for the multiple circuit design goals. The performance of CMRUN is rigorously evaluated against 11 multiobjective algorithms, encompassing 15 benchmark test functions and practical circuit design scenarios. The findings of this study underscore the efficiency and real-world applicability of CMRUN, offering valuable insights for tailoring optimization algorithms to the real-world circuit design challenges.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"284 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Problems in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/6691214","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Circuit design plays a pivotal role in engineering, ensuring the creation of efficient, reliable, and cost-effective electronic devices. The complexity of modern circuit design problems has led to the exploration of multi-objective optimization techniques for circuit design optimization, as traditional optimization tools fall short in handling such problems. While metaheuristic algorithms, especially genetic algorithms, have demonstrated promise, their susceptibility to premature convergence poses challenges. This paper proposes a pioneering approach, the chaotic multi-objective Runge–Kutta algorithm (CMRUN), for circuit design optimization, building upon the Runge–Kutta optimization algorithm. By infusing chaos into the core RUN structure, a refined balance between exploration and exploitation is obtained, critical for addressing complex optimization landscapes, enabling the algorithm to navigate nonlinear and nonconvex optimization challenges effectively. This approach is extended to accommodate multiple objectives, ultimately generating Pareto Fronts for the multiple circuit design goals. The performance of CMRUN is rigorously evaluated against 11 multiobjective algorithms, encompassing 15 benchmark test functions and practical circuit design scenarios. The findings of this study underscore the efficiency and real-world applicability of CMRUN, offering valuable insights for tailoring optimization algorithms to the real-world circuit design challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于优化电路设计的混沌多目标 Runge-Kutta 优化算法
电路设计在工程学中起着举足轻重的作用,它确保了高效、可靠和经济高效的电子设备的诞生。由于现代电路设计问题的复杂性,传统的优化工具在处理此类问题上存在不足,因此人们开始探索用于电路设计优化的多目标优化技术。虽然元启发式算法,尤其是遗传算法,已显示出良好的前景,但其容易过早收敛的特性也带来了挑战。本文在 Runge-Kutta 优化算法的基础上,提出了一种用于电路设计优化的开创性方法--混沌多目标 Runge-Kutta 算法(CMRUN)。通过将混沌注入 RUN 的核心结构,在探索和利用之间实现了精巧的平衡,这对解决复杂的优化问题至关重要,使该算法能够有效地应对非线性和非凸优化挑战。这种方法可扩展至多个目标,最终为多个电路设计目标生成帕累托前沿(Pareto Fronts)。CMRUN 的性能对照 11 种多目标算法进行了严格评估,包括 15 种基准测试功能和实际电路设计场景。这项研究的结果强调了 CMRUN 的效率和实际应用性,为针对实际电路设计挑战定制优化算法提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Problems in Engineering
Mathematical Problems in Engineering 工程技术-工程:综合
CiteScore
4.00
自引率
0.00%
发文量
2853
审稿时长
4.2 months
期刊介绍: Mathematical Problems in Engineering is a broad-based journal which publishes articles of interest in all engineering disciplines. Mathematical Problems in Engineering publishes results of rigorous engineering research carried out using mathematical tools. Contributions containing formulations or results related to applications are also encouraged. The primary aim of Mathematical Problems in Engineering is rapid publication and dissemination of important mathematical work which has relevance to engineering. All areas of engineering are within the scope of the journal. In particular, aerospace engineering, bioengineering, chemical engineering, computer engineering, electrical engineering, industrial engineering and manufacturing systems, and mechanical engineering are of interest. Mathematical work of interest includes, but is not limited to, ordinary and partial differential equations, stochastic processes, calculus of variations, and nonlinear analysis.
期刊最新文献
Flower Recognition Algorithm Based on Nonlinear Regression of Pixel Value On Spectral Radius and Energy of a Graph with Self-Loops Influence of Structural Parameters of Gearbox Seal System of Electrical Multiple Units on Seal Performance Implementation of Bioelectrical Impedance Measuring Instrument Based on Embedded System Analyzing Lower Limb Dynamics in Human Gait Using Average Value-Based Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1