Narmadha G, Deivasigamani S, Muthukumar Vellaisamy, Lídio Inácio Freitas, Badlishah Ahmad R, Sakthivel B
{"title":"Detection of Human Stress Using Optimized Feature Selection and Classification in ECG Signals","authors":"Narmadha G, Deivasigamani S, Muthukumar Vellaisamy, Lídio Inácio Freitas, Badlishah Ahmad R, Sakthivel B","doi":"10.1155/2023/3356347","DOIUrl":null,"url":null,"abstract":"An autonomic nervous system (ANS) of humans is majorly affected by psychological stress. The changes in ANS may cause several chronic diseases in humans. The electrocardiogram (ECG) signal is used to observe the variation in ANS. Numerous techniques are presented for an ECG stress signal handling feature extraction and classification. This work managed a heart rate variability feature acquired from smaller peak waveforms such as P, Q, S, and T waves. Also, the R peak is detected, which is a significant part of the ECG waveform. In this work, the proposed stress classification work has been categorized into two main processes: feature selection (FS) and classification. The main aim of the proposed work is to propose an optimized FS and classifier model for the detection of stress in ECG signals. The Metaheuristics model of the African vulture optimization (AVO) technique is presented to perform an FS. This selection is made to choose the required features and minimize the data for classification. The AVO-based modified Elman recurrent neural network (MERNN) technique is proposed to perform an efficient classification. The AVO is used for fine-tuning the weight of the MERNN technique. The experimental result of this technique is evaluated in terms of Recall (91.56%), Accuracy (92.43%), Precision (92.78%), and <i>F</i>1 score (95.86%). Thus, the proposed performance achieved a superior result than the conventional techniques.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Problems in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/3356347","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
An autonomic nervous system (ANS) of humans is majorly affected by psychological stress. The changes in ANS may cause several chronic diseases in humans. The electrocardiogram (ECG) signal is used to observe the variation in ANS. Numerous techniques are presented for an ECG stress signal handling feature extraction and classification. This work managed a heart rate variability feature acquired from smaller peak waveforms such as P, Q, S, and T waves. Also, the R peak is detected, which is a significant part of the ECG waveform. In this work, the proposed stress classification work has been categorized into two main processes: feature selection (FS) and classification. The main aim of the proposed work is to propose an optimized FS and classifier model for the detection of stress in ECG signals. The Metaheuristics model of the African vulture optimization (AVO) technique is presented to perform an FS. This selection is made to choose the required features and minimize the data for classification. The AVO-based modified Elman recurrent neural network (MERNN) technique is proposed to perform an efficient classification. The AVO is used for fine-tuning the weight of the MERNN technique. The experimental result of this technique is evaluated in terms of Recall (91.56%), Accuracy (92.43%), Precision (92.78%), and F1 score (95.86%). Thus, the proposed performance achieved a superior result than the conventional techniques.
期刊介绍:
Mathematical Problems in Engineering is a broad-based journal which publishes articles of interest in all engineering disciplines. Mathematical Problems in Engineering publishes results of rigorous engineering research carried out using mathematical tools. Contributions containing formulations or results related to applications are also encouraged. The primary aim of Mathematical Problems in Engineering is rapid publication and dissemination of important mathematical work which has relevance to engineering. All areas of engineering are within the scope of the journal. In particular, aerospace engineering, bioengineering, chemical engineering, computer engineering, electrical engineering, industrial engineering and manufacturing systems, and mechanical engineering are of interest. Mathematical work of interest includes, but is not limited to, ordinary and partial differential equations, stochastic processes, calculus of variations, and nonlinear analysis.