{"title":"AI-assisted proofreading of RNA splicing","authors":"Ángel Guerra-Moreno, Juan Valcárcel","doi":"10.1101/gad.351373.123","DOIUrl":null,"url":null,"abstract":"RNA helicases orchestrate proofreading mechanisms that facilitate accurate intron removal from pre-mRNAs. How these activities are recruited to spliceosome/pre-mRNA complexes remains poorly understood. In this issue of <em>Genes & Development</em>, Zhang and colleagues (pp. XXX–XXX) combine biochemical experiments with AI-based structure prediction methods to generate a model for the interaction between SF3B1, a core splicing factor essential for the recognition of the intron branchpoint, and SUGP1, a protein that bridges SF3B1 with the helicase DHX15. Interaction with SF3B1 exposes the G-patch domain of SUGP1, facilitating binding to and activation of DHX15. The model can explain the activation of cryptic 3′ splice sites induced by mutations in SF3B1 or SUGP1 frequently found in cancer.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":"12 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.351373.123","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA helicases orchestrate proofreading mechanisms that facilitate accurate intron removal from pre-mRNAs. How these activities are recruited to spliceosome/pre-mRNA complexes remains poorly understood. In this issue of Genes & Development, Zhang and colleagues (pp. XXX–XXX) combine biochemical experiments with AI-based structure prediction methods to generate a model for the interaction between SF3B1, a core splicing factor essential for the recognition of the intron branchpoint, and SUGP1, a protein that bridges SF3B1 with the helicase DHX15. Interaction with SF3B1 exposes the G-patch domain of SUGP1, facilitating binding to and activation of DHX15. The model can explain the activation of cryptic 3′ splice sites induced by mutations in SF3B1 or SUGP1 frequently found in cancer.
期刊介绍:
Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers.
Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).