João B. Silva Neto, Lucio F. M. Mota, Sabrina T. Amorim, Elisa Peripolli, Luiz F. Brito, Claudio U. Magnabosco, Fernando Baldi
{"title":"Genotype-by-environment interactions for feed efficiency traits in Nellore cattle based on bi-trait reaction norm models","authors":"João B. Silva Neto, Lucio F. M. Mota, Sabrina T. Amorim, Elisa Peripolli, Luiz F. Brito, Claudio U. Magnabosco, Fernando Baldi","doi":"10.1186/s12711-023-00867-2","DOIUrl":null,"url":null,"abstract":"Selecting animals for feed efficiency directly impacts the profitability of the beef cattle industry, which contributes to minimizing the environmental footprint of beef production. Genetic and environmental factors influence animal feed efficiency, leading to phenotypic variability when exposed to different environmental conditions (i.e., temperature and nutritional level). Thus, our aim was to assess potential genotype-by-environment (G × E) interactions for dry matter intake (DMI) and residual feed intake (RFI) in Nellore cattle (Bos taurus indicus) based on bi-trait reaction norm models (RN) and evaluate the genetic association between RFI and DMI across different environmental gradient (EG) levels. For this, we used phenotypic information on 12,958 animals (young bulls and heifers) for DMI and RFI recorded during 158 feed efficiency trials. The heritability estimates for DMI and RFI across EG ranged from 0.26 to 0.54 and from 0.07 to 0.41, respectively. The average genetic correlations (± standard deviation) across EG for DMI and RFI were 0.83 ± 0.19 and 0.81 ± 0.21, respectively, with the lowest genetic correlation estimates observed between extreme EG levels (low vs. high) i.e. 0.22 for RFI and 0.26 for DMI, indicating the presence of G × E interactions. The genetic correlation between RFI and DMI across EG levels decreased as the EG became more favorable and ranged from 0.79 (lowest EG) to 0.52 (highest EG). Based on the estimated breeding values from extreme EG levels (low vs. high), we observed a moderate Spearman correlation of 0.61 (RFI) and 0.55 (DMI) and a selection coincidence of 53.3% and 40.0% for RFI and DMI, respectively. Our results show evidence of G × E interactions on feed efficiency traits in Nellore cattle, especially in feeding trials with an average daily gain (ADG) that is far from the expected of 1 kg/day, thus increasing reranking of animals.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-023-00867-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Selecting animals for feed efficiency directly impacts the profitability of the beef cattle industry, which contributes to minimizing the environmental footprint of beef production. Genetic and environmental factors influence animal feed efficiency, leading to phenotypic variability when exposed to different environmental conditions (i.e., temperature and nutritional level). Thus, our aim was to assess potential genotype-by-environment (G × E) interactions for dry matter intake (DMI) and residual feed intake (RFI) in Nellore cattle (Bos taurus indicus) based on bi-trait reaction norm models (RN) and evaluate the genetic association between RFI and DMI across different environmental gradient (EG) levels. For this, we used phenotypic information on 12,958 animals (young bulls and heifers) for DMI and RFI recorded during 158 feed efficiency trials. The heritability estimates for DMI and RFI across EG ranged from 0.26 to 0.54 and from 0.07 to 0.41, respectively. The average genetic correlations (± standard deviation) across EG for DMI and RFI were 0.83 ± 0.19 and 0.81 ± 0.21, respectively, with the lowest genetic correlation estimates observed between extreme EG levels (low vs. high) i.e. 0.22 for RFI and 0.26 for DMI, indicating the presence of G × E interactions. The genetic correlation between RFI and DMI across EG levels decreased as the EG became more favorable and ranged from 0.79 (lowest EG) to 0.52 (highest EG). Based on the estimated breeding values from extreme EG levels (low vs. high), we observed a moderate Spearman correlation of 0.61 (RFI) and 0.55 (DMI) and a selection coincidence of 53.3% and 40.0% for RFI and DMI, respectively. Our results show evidence of G × E interactions on feed efficiency traits in Nellore cattle, especially in feeding trials with an average daily gain (ADG) that is far from the expected of 1 kg/day, thus increasing reranking of animals.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.