Sparse seismic data regularization in both shot and trace domains using a residual block autoencoder based on the fast Fourier transform

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geophysics Pub Date : 2023-12-09 DOI:10.1190/geo2023-0097.1
Alexandre L. Campi, R. Misságia
{"title":"Sparse seismic data regularization in both shot and trace domains using a residual block autoencoder based on the fast Fourier transform","authors":"Alexandre L. Campi, R. Misságia","doi":"10.1190/geo2023-0097.1","DOIUrl":null,"url":null,"abstract":"The increasing use of sparse acquisitions in seismic data acquisition offers advantages in cost and time savings. However, it results in irregularly sampled seismic data, adversely impacting the quality of the final images. In this paper, we propose the ResFFT-CAE network, a convolutional neural network with residual blocks based on the Fourier transform. Incorporating residual blocks allows the network to extract both high- and low-frequency features from the seismic data. The high-frequency features capture detailed information, while the low-frequency features integrate the overall data structure, facilitating superior recovery of irregularly sampled seismic data in the trace and shot domains. We evaluated the performance of the ResFFT-CAE network on both synthetic and field data. On synthetic data, we compared the ResFFT-CAE network with the compressive sensing (CS) method utilizing the curvelet transform. For field data, we conducted comparisons with other neural networks, including the convolutional autoencoder (CAE) and U-Net. The results demonstrated that the ResFFT-CAE network consistently outperformed other approaches in all scenarios. It produced images of superior quality, characterized by lower residuals and reduced distortions. Furthermore, when evaluating model generalization, tests using models trained on synthetic data also exhibited promising results. In conclusion, the ResFFT-CAE network shows great promise as a highly efficient tool for the regularizing irregularly sampled seismic data. Its excellent performance suggests potential applications in the preconditioning of seismic data analysis and processing flows.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"11 11","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2023-0097.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing use of sparse acquisitions in seismic data acquisition offers advantages in cost and time savings. However, it results in irregularly sampled seismic data, adversely impacting the quality of the final images. In this paper, we propose the ResFFT-CAE network, a convolutional neural network with residual blocks based on the Fourier transform. Incorporating residual blocks allows the network to extract both high- and low-frequency features from the seismic data. The high-frequency features capture detailed information, while the low-frequency features integrate the overall data structure, facilitating superior recovery of irregularly sampled seismic data in the trace and shot domains. We evaluated the performance of the ResFFT-CAE network on both synthetic and field data. On synthetic data, we compared the ResFFT-CAE network with the compressive sensing (CS) method utilizing the curvelet transform. For field data, we conducted comparisons with other neural networks, including the convolutional autoencoder (CAE) and U-Net. The results demonstrated that the ResFFT-CAE network consistently outperformed other approaches in all scenarios. It produced images of superior quality, characterized by lower residuals and reduced distortions. Furthermore, when evaluating model generalization, tests using models trained on synthetic data also exhibited promising results. In conclusion, the ResFFT-CAE network shows great promise as a highly efficient tool for the regularizing irregularly sampled seismic data. Its excellent performance suggests potential applications in the preconditioning of seismic data analysis and processing flows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于快速傅立叶变换的残差块自动编码器在射域和震迹域实现稀疏地震数据正则化
稀疏采集在地震数据采集中的应用越来越多,在节省成本和时间方面具有优势。然而,它会导致地震数据采样不规则,对最终图像的质量产生不利影响。本文提出了一种基于傅里叶变换的残差块卷积神经网络——ResFFT-CAE网络。结合残余块可以使网络从地震数据中提取高频和低频特征。高频特征捕获详细信息,而低频特征整合整体数据结构,有助于在迹线和射孔域中更好地恢复不规则采样的地震数据。我们在综合数据和现场数据上评估了ResFFT-CAE网络的性能。在综合数据上,我们将ResFFT-CAE网络与利用曲线变换的压缩感知(CS)方法进行了比较。对于现场数据,我们与其他神经网络进行了比较,包括卷积自编码器(CAE)和U-Net。结果表明,在所有场景中,ResFFT-CAE网络始终优于其他方法。它产生了高质量的图像,其特点是低残差和减少畸变。此外,在评估模型泛化时,使用合成数据训练的模型进行的测试也显示出有希望的结果。综上所述,ResFFT-CAE网络作为一种对不规则采样地震数据进行正则化的高效工具,具有广阔的应用前景。其优异的性能在地震数据分析和处理流程的预处理方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
期刊最新文献
TRAIL C1595T Variant Critically Alters the Level of sTRAIL in Terms of Histopathological Parameters in Colorectal Cancer. The Effect of Height on Adverse Short-Term Outcomes After Lower-Extremity Bypass Surgery in Patients with Diabetes Mellitus. Stress-dependent reflection and transmission of elastic waves under confining, uniaxial, and pure shear prestresses DeepNRMS: Unsupervised deep learning for noise-robust CO2 monitoring in time-lapse seismic images Improvement of quality of life after 2-month exoskeleton training in patients with chronic spinal cord injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1