{"title":"Enhancing the capacity of quantum dense coding from correlated amplitude damping channel via non-Hermitian operation","authors":"Yang Leng, Fei Chen","doi":"10.1088/1555-6611/ad109b","DOIUrl":null,"url":null,"abstract":"Using the non-Hermitian operation approach, we propose a scheme to protect and enhance quantum dense coding from correlated amplitude damping (AD) decoherence. In contrast to the results of memoryless AD channel, we show that the memory effects play a significant role in the suppression of quantum dense coding sudden death. Moreover, we find that the damaged quantum dense coding can be effectively enhanced by using the non-Hermitian operation. Furthermore, the freezing phenomenon of quantum dense coding can be detected by using the optimal non-Hermitian operation.","PeriodicalId":17976,"journal":{"name":"Laser Physics","volume":"55 39","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1555-6611/ad109b","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using the non-Hermitian operation approach, we propose a scheme to protect and enhance quantum dense coding from correlated amplitude damping (AD) decoherence. In contrast to the results of memoryless AD channel, we show that the memory effects play a significant role in the suppression of quantum dense coding sudden death. Moreover, we find that the damaged quantum dense coding can be effectively enhanced by using the non-Hermitian operation. Furthermore, the freezing phenomenon of quantum dense coding can be detected by using the optimal non-Hermitian operation.
期刊介绍:
Laser Physics offers a comprehensive view of theoretical and experimental laser research and applications. Articles cover every aspect of modern laser physics and quantum electronics, emphasizing physical effects in various media (solid, gaseous, liquid) leading to the generation of laser radiation; peculiarities of propagation of laser radiation; problems involving impact of laser radiation on various substances and the emerging physical effects, including coherent ones; the applied use of lasers and laser spectroscopy; the processing and storage of information; and more.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics