{"title":"Image-domain seismic inversion by deblurring with invertible Recurrent Inference Machines","authors":"Haorui Peng, Ivan Vasconcelos, M. Ravasi","doi":"10.1190/geo2022-0780.1","DOIUrl":null,"url":null,"abstract":"In complex geological settings and in the presence of sparse acquisition systems, seismic migration images manifest as non-stationary blurred versions of the unknown subsurface model. Thus, image-domain deblurring is an important step to produce interpretable and high-resolution models of the subsurface. Most deblurring methods focus on inverting seismic images for their underlying reflectivity by iterative least-squares inversion of a local Hessian approximation; this is obtained by either direct modeling of the so-called point spread functions or by a migration-demigration process. In this work, we adopt a novel deep learning framework, based on invertible Recurrent Inference Machines (i-RIMs), which allows approaching any inverse problem as a supervised learning task informed by the known modeling operator (convolution with point-spread functions in our case): the proposed algorithm can directly invert migrated images for impedance perturbation models, assisted with the prior information of a smooth velocity model and the modeling operator. Because i-RIMs are constrained by the forward operator, they implicitly learn to shape/regularise output models in a training-data-driven fashion. As such, the resulting deblurred images show great robustness to noise in the data and spectral deficiencies (e.g., due to limited acquisition). The key role played by the i-RIM network design and the inclusion of the forward operator in the training process is supported by several synthetic examples. Finally, using field data, we show that i-RIM-based deblurring has great potential in yielding robust, high-quality relative impedance estimates from migrated seismic images. Our approach could be of importance towards future Deep-Learning-based quantitative reservoir characterization and monitoring.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"17 23","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2022-0780.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In complex geological settings and in the presence of sparse acquisition systems, seismic migration images manifest as non-stationary blurred versions of the unknown subsurface model. Thus, image-domain deblurring is an important step to produce interpretable and high-resolution models of the subsurface. Most deblurring methods focus on inverting seismic images for their underlying reflectivity by iterative least-squares inversion of a local Hessian approximation; this is obtained by either direct modeling of the so-called point spread functions or by a migration-demigration process. In this work, we adopt a novel deep learning framework, based on invertible Recurrent Inference Machines (i-RIMs), which allows approaching any inverse problem as a supervised learning task informed by the known modeling operator (convolution with point-spread functions in our case): the proposed algorithm can directly invert migrated images for impedance perturbation models, assisted with the prior information of a smooth velocity model and the modeling operator. Because i-RIMs are constrained by the forward operator, they implicitly learn to shape/regularise output models in a training-data-driven fashion. As such, the resulting deblurred images show great robustness to noise in the data and spectral deficiencies (e.g., due to limited acquisition). The key role played by the i-RIM network design and the inclusion of the forward operator in the training process is supported by several synthetic examples. Finally, using field data, we show that i-RIM-based deblurring has great potential in yielding robust, high-quality relative impedance estimates from migrated seismic images. Our approach could be of importance towards future Deep-Learning-based quantitative reservoir characterization and monitoring.
期刊介绍:
Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics.
Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research.
Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring.
The PDF format of each Geophysics paper is the official version of record.