Regulation of Na+-K+-ATPase Leads to Disturbances of Isoproterenol-induced Cardiac Dysfunction via Interference of Ca2+ -dependent Cardiac Metabolism

IF 6.7 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Clinical science Pub Date : 2023-12-07 DOI:10.1042/cs20231039
Xiaofei Yan, Meihe Li, Ping Lan, Meng Xun, Ying Zhang, Jinghui Shi, Ruijia Wang, Jin Zheng
{"title":"Regulation of Na+-K+-ATPase Leads to Disturbances of Isoproterenol-induced Cardiac Dysfunction via Interference of Ca2+ -dependent Cardiac Metabolism","authors":"Xiaofei Yan, Meihe Li, Ping Lan, Meng Xun, Ying Zhang, Jinghui Shi, Ruijia Wang, Jin Zheng","doi":"10.1042/cs20231039","DOIUrl":null,"url":null,"abstract":"Reductions in Na+-K+-ATPase (NKA) activity and expression are often observed in the progress of various reason-induced heart failure (HF). However, NKA α1 mutation or knockdown cannot cause spontaneous heart disease. Whether the abnormal NKAα1 directly contributes to HF pathogenesis remains unknown. Here, we challenge NKA α1 +/- mice with isoproterenol to evaluate the role of NKA α1 haploinsufficiency in isoproterenol (ISO)-induced cardiac dysfunction. Genetic knockdown of NKAα1 accelerated ISO-induced cardiac cell hypertrophy, heart fibrosis, and dysfunction. Further studies revealed decreased Krebs cycle, fatty acid oxidation, and mitochondrial OXPHOS in the hearts of NKA α1 +/- mice challenged with ISO. In ISO-treated conditions, inhibition of NKA elevated cytosolic Na+, further reduced mitochondrial Ca2+ via mNCE, and then finally downregulated cardiac cell energy metabolism. In addition, a supplement of DRm217 alleviated ISO-induced heart dysfunction, mitigated cardiac remodeling, and improved cytosolic Na+ and Ca2+ elevation and mitochondrial Ca2+ depression in the NKAα1+/− mouse model. The findings suggest that targeting NKA and mitochondria Ca2+ could be a promising strategy in the treatment of heart disease.","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":"48 5","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/cs20231039","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reductions in Na+-K+-ATPase (NKA) activity and expression are often observed in the progress of various reason-induced heart failure (HF). However, NKA α1 mutation or knockdown cannot cause spontaneous heart disease. Whether the abnormal NKAα1 directly contributes to HF pathogenesis remains unknown. Here, we challenge NKA α1 +/- mice with isoproterenol to evaluate the role of NKA α1 haploinsufficiency in isoproterenol (ISO)-induced cardiac dysfunction. Genetic knockdown of NKAα1 accelerated ISO-induced cardiac cell hypertrophy, heart fibrosis, and dysfunction. Further studies revealed decreased Krebs cycle, fatty acid oxidation, and mitochondrial OXPHOS in the hearts of NKA α1 +/- mice challenged with ISO. In ISO-treated conditions, inhibition of NKA elevated cytosolic Na+, further reduced mitochondrial Ca2+ via mNCE, and then finally downregulated cardiac cell energy metabolism. In addition, a supplement of DRm217 alleviated ISO-induced heart dysfunction, mitigated cardiac remodeling, and improved cytosolic Na+ and Ca2+ elevation and mitochondrial Ca2+ depression in the NKAα1+/− mouse model. The findings suggest that targeting NKA and mitochondria Ca2+ could be a promising strategy in the treatment of heart disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Na+-K+-ATP 酶的调节通过干扰 Ca2+ 依赖性心脏代谢导致异丙肾上腺素诱导的心功能紊乱
Na+-K+- atp酶(NKA)活性和表达的降低经常在各种原因引起的心力衰竭(HF)的进展中观察到。然而,NKA α1突变或敲低并不会引起自发性心脏病。异常的NKAα1是否直接参与HF的发病机制尚不清楚。在这里,我们用异丙肾上腺素刺激NKA α1 +/-小鼠,以评估NKA α1单倍不足在异丙肾上腺素(ISO)诱导的心功能障碍中的作用。NKAα1基因敲低加速了iso诱导的心肌细胞肥大、心脏纤维化和功能障碍。进一步的研究表明,NKA α1 +/-小鼠心脏的克雷布斯循环、脂肪酸氧化和线粒体OXPHOS减少。在iso处理的条件下,抑制NKA升高细胞质Na+,通过mNCE进一步降低线粒体Ca2+,最终下调心肌细胞能量代谢。此外,在NKAα1+/−小鼠模型中,补充DRm217可减轻iso诱导的心功能障碍,减轻心脏重塑,改善胞质Na+和Ca2+升高以及线粒体Ca2+抑制。研究结果表明,靶向NKA和线粒体Ca2+可能是治疗心脏病的一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical science
Clinical science 医学-医学:研究与实验
CiteScore
11.40
自引率
0.00%
发文量
189
审稿时长
4-8 weeks
期刊介绍: Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health. Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively: Cardiovascular system Cerebrovascular system Gastrointestinal tract and liver Genomic medicine Infection and immunity Inflammation Oncology Metabolism Endocrinology and nutrition Nephrology Circulation Respiratory system Vascular biology Molecular pathology.
期刊最新文献
CXCL5 inhibition ameliorates acute kidney injury and prevents the progression from acute kidney injury to chronic kidney disease. Placental small extracellular vesicles from normal pregnancy and gestational diabetes increase insulin gene transcription and content in β cells. Endothelin-1 receptor blockade impairs invasion patterns in engineered 3D high-grade serous ovarian cancer tumouroids. Evaluation of the cell death markers for aberrated cell free DNA release in high altitude pulmonary edema. Piezo Channels in JG cells do not Regulate Renin Expression or Renin Release to the Circulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1