Parameter Identification of Permanent Magnet Synchronous Motor with Dynamic Forgetting Factor Based on H∞ Filtering Algorithm

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL Actuators Pub Date : 2023-12-07 DOI:10.3390/act12120453
Tianqing Yuan, Jiu Chang, Yupeng Zhang
{"title":"Parameter Identification of Permanent Magnet Synchronous Motor with Dynamic Forgetting Factor Based on H∞ Filtering Algorithm","authors":"Tianqing Yuan, Jiu Chang, Yupeng Zhang","doi":"10.3390/act12120453","DOIUrl":null,"url":null,"abstract":"To address system parameter changes during permanent magnet synchronous motor (PMSM) operation, an H∞ filtering algorithm with a dynamic forgetting factor is proposed for online identification of motor resistance and inductance. First, a standard linear discrete PMSM parameter identification model is established; then, the discrete H∞ filtering algorithm is derived using game theory reducing state and measurement noise influence. A cost function is defined, solving extremes values of different terms. A dynamic forgetting factor is introduced to the weighted combination of initial and current measurement noise covariance matrices, eliminating identification issues from different initial values. On this basis, a dynamic forgetting factor is added to weigh the combination of the initial measurement noise covariance matrix and the current measurement noise covariance matrix, which eliminates the influence of the discrimination error caused by the different initial values. Finally, the identification model is built in MATLAB/Simulink for simulation analysis to verify the feasibility of the proposed algorithm. The simulation results show the proposed H∞ filtering algorithm rapidly and accurately identifies resistance and inductance values with significantly improved robustness. The forgetting factor enables quick stable recognition even with poor initial values, enhancing PMSM control performance.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"45 22","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act12120453","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To address system parameter changes during permanent magnet synchronous motor (PMSM) operation, an H∞ filtering algorithm with a dynamic forgetting factor is proposed for online identification of motor resistance and inductance. First, a standard linear discrete PMSM parameter identification model is established; then, the discrete H∞ filtering algorithm is derived using game theory reducing state and measurement noise influence. A cost function is defined, solving extremes values of different terms. A dynamic forgetting factor is introduced to the weighted combination of initial and current measurement noise covariance matrices, eliminating identification issues from different initial values. On this basis, a dynamic forgetting factor is added to weigh the combination of the initial measurement noise covariance matrix and the current measurement noise covariance matrix, which eliminates the influence of the discrimination error caused by the different initial values. Finally, the identification model is built in MATLAB/Simulink for simulation analysis to verify the feasibility of the proposed algorithm. The simulation results show the proposed H∞ filtering algorithm rapidly and accurately identifies resistance and inductance values with significantly improved robustness. The forgetting factor enables quick stable recognition even with poor initial values, enhancing PMSM control performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 H∞ 滤波算法的带动态遗忘因子的永磁同步电机参数识别
针对永磁同步电机运行过程中系统参数的变化,提出了一种带动态遗忘因子的H∞滤波算法,用于电机电阻和电感的在线辨识。首先,建立了标准的线性离散PMSM参数辨识模型;然后,利用博弈论推导了离散H∞滤波算法,减小了状态和测量噪声的影响。定义一个成本函数,求解不同项的极值。在初始和当前测量噪声协方差矩阵的加权组合中引入动态遗忘因子,消除了不同初始值的识别问题。在此基础上,加入动态遗忘因子对初始测量噪声协方差矩阵与当前测量噪声协方差矩阵的组合进行加权,消除了初始值不同导致的判别误差的影响。最后,在MATLAB/Simulink中建立识别模型进行仿真分析,验证了所提算法的可行性。仿真结果表明,提出的H∞滤波算法能够快速准确地识别电阻和电感值,鲁棒性显著提高。遗忘因子即使在初始值较差的情况下也能实现快速稳定的识别,提高了永磁同步电机的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Actuators
Actuators Mathematics-Control and Optimization
CiteScore
3.90
自引率
15.40%
发文量
315
审稿时长
11 weeks
期刊介绍: Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.
期刊最新文献
Current State, Needs, and Opportunities for Wearable Robots in Military Medical Rehabilitation and Force Protection. Numerical Investigation on the Evolution Process of Different Vortex Structures and Distributed Blowing Control for Dynamic Stall Suppression of Rotor Airfoils Experimental Research on Avoidance Obstacle Control for Mobile Robots Using Q-Learning (QL) and Deep Q-Learning (DQL) Algorithms in Dynamic Environments Design and Control of a Reconfigurable Robot with Rolling and Flying Locomotion Dynamic Path Planning for Mobile Robots by Integrating Improved Sparrow Search Algorithm and Dynamic Window Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1