{"title":"A Single-Stack Output Power Prediction Method for High-Power, Multi-Stack SOFC System Requirements","authors":"Daihui Zhang, Jiangong Hu, Wei Zhao, Meilin Lai, Zilin Gao, Xiaolong Wu","doi":"10.3390/inorganics11120474","DOIUrl":null,"url":null,"abstract":"The prediction of stack output power in solid oxide fuel cell (SOFC) systems is a key technology that urgently needs improvement, which will promote SOFC systems towards high-power multi-stack applications. The accuracy of power prediction directly determines the control effect and working condition recognition accuracy of the SOFC system controller. In order to achieve this goal, a genetic algorithm back propagation (GA-BP) neural network is constructed to predict output power in the SOFC system. By testing 40 sets of sample data collected from the experimental platform, it is found that the GA-BP method overcomes the limitation of the traditional back propagation (BP) method—falling into local optima. Further analysis shows that the average relative error of GA-BP has decreased to 1%. The reduction of the relative error improves the accuracy of the prediction results and the average prediction accuracy. Compared with the long short-term memory (LSTM) and BP algorithm, the GA-BP prediction model significantly reduces the relative error of power output prediction, which provides a solid foundation for multi-stack SOFC systems.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":"2 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics11120474","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The prediction of stack output power in solid oxide fuel cell (SOFC) systems is a key technology that urgently needs improvement, which will promote SOFC systems towards high-power multi-stack applications. The accuracy of power prediction directly determines the control effect and working condition recognition accuracy of the SOFC system controller. In order to achieve this goal, a genetic algorithm back propagation (GA-BP) neural network is constructed to predict output power in the SOFC system. By testing 40 sets of sample data collected from the experimental platform, it is found that the GA-BP method overcomes the limitation of the traditional back propagation (BP) method—falling into local optima. Further analysis shows that the average relative error of GA-BP has decreased to 1%. The reduction of the relative error improves the accuracy of the prediction results and the average prediction accuracy. Compared with the long short-term memory (LSTM) and BP algorithm, the GA-BP prediction model significantly reduces the relative error of power output prediction, which provides a solid foundation for multi-stack SOFC systems.
期刊介绍:
Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD