Construction of Two-Derivative Runge–Kutta Methods of Order Six

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Algorithms Pub Date : 2023-12-06 DOI:10.3390/a16120558
Z. Kalogiratou, T. Monovasilis
{"title":"Construction of Two-Derivative Runge–Kutta Methods of Order Six","authors":"Z. Kalogiratou, T. Monovasilis","doi":"10.3390/a16120558","DOIUrl":null,"url":null,"abstract":"Two-Derivative Runge–Kutta methods have been proposed by Chan and Tsai in 2010 and order conditions up to the fifth order are given. In this work, for the first time, we derive order conditions for order six. Simplifying assumptions that reduce the number of order conditions are also given. The procedure for constructing sixth-order methods is presented. A specific method is derived in order to illustrate the procedure; this method is of the sixth algebraic order with a reduced phase-lag and amplification error. For numerical comparison, five well-known test problems have been solved using a seventh-order Two-Derivative Runge–Kutta method developed by Chan and Tsai and several Runge–Kutta methods of orders 6 and 8. Diagrams of the maximum absolute error vs. computation time show the efficiency of the new method.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"13 11","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16120558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Two-Derivative Runge–Kutta methods have been proposed by Chan and Tsai in 2010 and order conditions up to the fifth order are given. In this work, for the first time, we derive order conditions for order six. Simplifying assumptions that reduce the number of order conditions are also given. The procedure for constructing sixth-order methods is presented. A specific method is derived in order to illustrate the procedure; this method is of the sixth algebraic order with a reduced phase-lag and amplification error. For numerical comparison, five well-known test problems have been solved using a seventh-order Two-Derivative Runge–Kutta method developed by Chan and Tsai and several Runge–Kutta methods of orders 6 and 8. Diagrams of the maximum absolute error vs. computation time show the efficiency of the new method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建六阶二衍 Runge-Kutta 方法
Chan和Tsai在2010年提出了二阶龙格-库塔方法,并给出了五阶以下的阶条件。在这项工作中,我们首次导出了六阶方程的有序条件。简化假设,减少订购条件的数量也给出了。给出了构造六阶方法的步骤。为了说明该过程,推导了一个具体的方法;该方法是六阶代数阶,具有较低的相位滞后和放大误差。为了进行数值比较,用Chan和Tsai开发的七阶二阶龙格-库塔方法和几种6阶和8阶龙格-库塔方法解决了五个著名的测试问题。最大绝对误差与计算时间的关系图表明了新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
期刊最新文献
Specification Mining Based on the Ordering Points to Identify the Clustering Structure Clustering Algorithm and Model Checking Personalized Advertising in E-Commerce: Using Clickstream Data to Target High-Value Customers Navigating the Maps: Euclidean vs. Road Network Distances in Spatial Queries Hybrid Sparrow Search-Exponential Distribution Optimization with Differential Evolution for Parameter Prediction of Solar Photovoltaic Models Particle Swarm Optimization-Based Unconstrained Polygonal Fitting of 2D Shapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1