Temperature and Wear Analysis of Adhesively Bonded and Soldered Cutting Tools for Woodcutting

IF 3.3 Q2 ENGINEERING, MANUFACTURING Journal of Manufacturing and Materials Processing Pub Date : 2023-12-06 DOI:10.3390/jmmp7060223
Sascha Stribick, Rebecca Pahmeyer
{"title":"Temperature and Wear Analysis of Adhesively Bonded and Soldered Cutting Tools for Woodcutting","authors":"Sascha Stribick, Rebecca Pahmeyer","doi":"10.3390/jmmp7060223","DOIUrl":null,"url":null,"abstract":"Cutting tools undergo constant development to meet the demands of higher cutting speeds, difficult-to-cut materials and ecological considerations. One way to improve cutting tools involves transitioning from soldering to adhesive bonding in the manufacturing process. However, there is limited research comparing adhesively bonded tools with soldered tools in woodcutting applications. This paper presents a comparison between adhesively bonded and soldered tools in the cutting of medium-density fiberboards over a cutting distance of 1000 m. The results indicate that adhesively bonded tools are well-suited for machining medium-density fiberboards. Additionally, the cutting-edge radii exhibit a slower increase and the tool temperatures are higher compared to soldered tools. Future research could optimize the damping effect through the precise design of the bonding area. Additionally, investigating a cooling concept for the machining process could help minimize ageing effects.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"50 16","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp7060223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Cutting tools undergo constant development to meet the demands of higher cutting speeds, difficult-to-cut materials and ecological considerations. One way to improve cutting tools involves transitioning from soldering to adhesive bonding in the manufacturing process. However, there is limited research comparing adhesively bonded tools with soldered tools in woodcutting applications. This paper presents a comparison between adhesively bonded and soldered tools in the cutting of medium-density fiberboards over a cutting distance of 1000 m. The results indicate that adhesively bonded tools are well-suited for machining medium-density fiberboards. Additionally, the cutting-edge radii exhibit a slower increase and the tool temperatures are higher compared to soldered tools. Future research could optimize the damping effect through the precise design of the bonding area. Additionally, investigating a cooling concept for the machining process could help minimize ageing effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于木材切割的粘合和焊接切割工具的温度和磨损分析
刀具经过不断的发展,以满足更高的切削速度,难以切割的材料和生态考虑的要求。改进切削工具的一种方法是在制造过程中从焊接过渡到粘接。然而,在木刻应用中,比较粘接工具和焊接工具的研究有限。本文介绍了在切割距离为1000米的中密度纤维板时,粘接工具和焊接工具的比较。结果表明,粘接刀具适合加工中密度纤维板。此外,与焊接工具相比,尖端半径的增加速度较慢,工具温度也较高。未来的研究可以通过对粘接区域的精确设计来优化阻尼效果。此外,研究加工过程中的冷却概念可以帮助最大限度地减少老化效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Manufacturing and Materials Processing
Journal of Manufacturing and Materials Processing Engineering-Industrial and Manufacturing Engineering
CiteScore
5.10
自引率
6.20%
发文量
129
审稿时长
11 weeks
期刊最新文献
Assessing the Feasibility of Fabricating Thermoplastic Laminates from Unidirectional Tapes in Open Mold Environments Vickers Hardness Mechanical Models and Thermoplastic Polymer Injection-Molded Products’ Static Friction Coefficients Phase Composition, Microstructure and Mechanical Properties of Zr57Cu15Ni10Nb5 Alloy Obtained by Selective Laser Melting In-Process Machining Distortion Prediction Method Based on Bulk Residual Stresses Estimation from Reduced Layer Removal A Combined Microscopy Study of the Microstructural Evolution of Ferritic Stainless Steel upon Deep Drawing: The Role of Alloy Composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1