{"title":"An Efficient Closed-Form Formula for Evaluating r-Flip Moves in Quadratic Unconstrained Binary Optimization","authors":"B. Alidaee, Haibo Wang, L. Sua","doi":"10.3390/a16120557","DOIUrl":null,"url":null,"abstract":"Quadratic unconstrained binary optimization (QUBO) is a classic NP-hard problem with an enormous number of applications. Local search strategy (LSS) is one of the most fundamental algorithmic concepts and has been successfully applied to a wide range of hard combinatorial optimization problems. One LSS that has gained the attention of researchers is the r-flip (also known as r-Opt) strategy. Given a binary solution with n variables, the r-flip strategy “flips” r binary variables to obtain a new solution if the changes improve the objective function. The main purpose of this paper is to develop several results for the implementation of r-flip moves in QUBO, including a necessary and sufficient condition that when a 1-flip search reaches local optimality, the number of candidates for implementation of the r-flip moves can be reduced significantly. The results of the substantial computational experiments are reported to compare an r-flip strategy-embedded algorithm and a multiple start tabu search algorithm on a set of benchmark instances and three very-large-scale QUBO instances. The r-flip strategy implemented within the algorithm makes the algorithm very efficient, leading to very high-quality solutions within a short CPU time.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"121 11","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16120557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Quadratic unconstrained binary optimization (QUBO) is a classic NP-hard problem with an enormous number of applications. Local search strategy (LSS) is one of the most fundamental algorithmic concepts and has been successfully applied to a wide range of hard combinatorial optimization problems. One LSS that has gained the attention of researchers is the r-flip (also known as r-Opt) strategy. Given a binary solution with n variables, the r-flip strategy “flips” r binary variables to obtain a new solution if the changes improve the objective function. The main purpose of this paper is to develop several results for the implementation of r-flip moves in QUBO, including a necessary and sufficient condition that when a 1-flip search reaches local optimality, the number of candidates for implementation of the r-flip moves can be reduced significantly. The results of the substantial computational experiments are reported to compare an r-flip strategy-embedded algorithm and a multiple start tabu search algorithm on a set of benchmark instances and three very-large-scale QUBO instances. The r-flip strategy implemented within the algorithm makes the algorithm very efficient, leading to very high-quality solutions within a short CPU time.