Sinuhé Sánchez, Fernando J. González Villarreal, Ramón Domínguez Mora, M. L. Arganis Juárez
{"title":"Trend in rainfall associated with tropical cyclones in Mexico attributed to climate change and variability","authors":"Sinuhé Sánchez, Fernando J. González Villarreal, Ramón Domínguez Mora, M. L. Arganis Juárez","doi":"10.2166/wcc.2023.300","DOIUrl":null,"url":null,"abstract":"\n \n The aim of this study was to investigate the existence and the magnitude of trend in different areas and durations of TCR. To achieve this objective, a mixed-method approach was employed using depth–area–duration and areal reduction factor (ARFs) curves that can be described as a logarithm equation to generate time series that allows the application of statistical methods such as the Mann–Kendall (MK) and Spearman Rho (SR) to detect trends. Time series are generated by substituting different areas in the logarithmic equations. The evidence presented shows that in Mexico, the TCR lasting 24 h shows an increasing trend for maximum areas between 300 and 1,700 km2 according to the MK and SR tests, respectively; according to these same tests for durations of 48 h, upward trends were observed up to maximum areas between 5,700 and 6,900 km2. The Sen slope reports annual increases between 0.76 and 1.32 mm and between 1.15 and 2.06 for a duration of 24 and 48 h, respectively. In contrast, no trends were observed in the time series obtained from the ARFs. Finally, the Pettitt test reports an abrupt jump from the year 1997 in all cases.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2023.300","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to investigate the existence and the magnitude of trend in different areas and durations of TCR. To achieve this objective, a mixed-method approach was employed using depth–area–duration and areal reduction factor (ARFs) curves that can be described as a logarithm equation to generate time series that allows the application of statistical methods such as the Mann–Kendall (MK) and Spearman Rho (SR) to detect trends. Time series are generated by substituting different areas in the logarithmic equations. The evidence presented shows that in Mexico, the TCR lasting 24 h shows an increasing trend for maximum areas between 300 and 1,700 km2 according to the MK and SR tests, respectively; according to these same tests for durations of 48 h, upward trends were observed up to maximum areas between 5,700 and 6,900 km2. The Sen slope reports annual increases between 0.76 and 1.32 mm and between 1.15 and 2.06 for a duration of 24 and 48 h, respectively. In contrast, no trends were observed in the time series obtained from the ARFs. Finally, the Pettitt test reports an abrupt jump from the year 1997 in all cases.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.