{"title":"Study on Selective Adsorption Behavior and Mechanism of Quartz and Magnesite with a New Biodegradable Collector","authors":"Wenbao Liu, Qiang Zhao, Ruirui Zhang, Panxing Zhao, Wengang Liu, Cong Han, Yan-bai Shen","doi":"10.3390/separations10120590","DOIUrl":null,"url":null,"abstract":"Research on the efficient flotation desilication of low-grade magnesite is of great significance for the sustainable development of magnesium resources. Traditional collectors usually have some disadvantages, such as poor selectivity, severe environmental pollution, and weak water solubility. To strengthen the desilication flotation process of magnesite ore, the biodegradable surfactant, cocamidopropyl amine oxide (CPAO), was first utilized as the collector for the separation of the magnesite and quartz. The selective adsorption behavior and mechanism of the quartz and magnesite with the CPAO as the collector were studied through the micro-flotation experiments of the single mineral and the artificially mixed mineral, contact angle and atomic force microscopy (AFM) measurements, fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. The flotation results indicated that the CPAO showed good selectivity and could effectively separate magnesite and quartz. When the concentration of the CPAO was 10.0 mg/L in the natural pulp pH (about 7.2), the concentrates with 97.67% MgO recovery and 45.62% MgO grade were obtained. The contact angle and AFM measurements indicated that the CPAO could selectively adsorb on the quartz surface rather than the magnesite surface to improve the interface difference between them, especially its surface hydrophobicity. The results of the FTIR and XPS analyses indicated that the CPAO is selectively adsorbed on the surface of the quartz, mainly through electrostatic interaction and hydrogen bonding. In conclusion, the CPAO had good selectivity and great potential as an effective collector in the reverse flotation desilication progress of magnesite.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"113 19","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations10120590","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Research on the efficient flotation desilication of low-grade magnesite is of great significance for the sustainable development of magnesium resources. Traditional collectors usually have some disadvantages, such as poor selectivity, severe environmental pollution, and weak water solubility. To strengthen the desilication flotation process of magnesite ore, the biodegradable surfactant, cocamidopropyl amine oxide (CPAO), was first utilized as the collector for the separation of the magnesite and quartz. The selective adsorption behavior and mechanism of the quartz and magnesite with the CPAO as the collector were studied through the micro-flotation experiments of the single mineral and the artificially mixed mineral, contact angle and atomic force microscopy (AFM) measurements, fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. The flotation results indicated that the CPAO showed good selectivity and could effectively separate magnesite and quartz. When the concentration of the CPAO was 10.0 mg/L in the natural pulp pH (about 7.2), the concentrates with 97.67% MgO recovery and 45.62% MgO grade were obtained. The contact angle and AFM measurements indicated that the CPAO could selectively adsorb on the quartz surface rather than the magnesite surface to improve the interface difference between them, especially its surface hydrophobicity. The results of the FTIR and XPS analyses indicated that the CPAO is selectively adsorbed on the surface of the quartz, mainly through electrostatic interaction and hydrogen bonding. In conclusion, the CPAO had good selectivity and great potential as an effective collector in the reverse flotation desilication progress of magnesite.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization