Petrogenesis of the early Permian Hongliujing granite complex in the Chinese Eastern Tianshan orogen: Evidence for crustal growth in the Central Tianshan microcontinent
{"title":"Petrogenesis of the early Permian Hongliujing granite complex in the Chinese Eastern Tianshan orogen: Evidence for crustal growth in the Central Tianshan microcontinent","authors":"Zhen‐Yu He, R. Klemd, T. Lu, Lili Yan, Hua Xiang","doi":"10.1130/b36970.1","DOIUrl":null,"url":null,"abstract":"The generation and modification of silicic magma systems are essential processes in resolving the differentiation of continental crust. This understanding motivated the geochronological and geochemical study of the early Permian Hongliujing granite complex, consisting of quartz monzonite, granite, and leucogranite in the Central Tianshan microcontinent of the southern Central Asian Orogenic Belt. Laser ablation−inductively coupled plasma−mass spectrometry (LA-ICP-MS) zircon U-Pb dating of the Hongliujing complex rock units revealed almost identical ages (279 ± 2 Ma to 270 ± 2 Ma). The high-silica leucogranite and granite are characterized by positive Rb and negative Eu anomalies and Ba, Sr, P, and Ti depletions. The zircon trace elements are characterized by relatively low Ti and Th/U and high Yb/Gd. In contrast, the quartz monzonite and its mafic microgranular enclaves display minor negative Ba, Sr, P, Ti, and Eu anomalies, while the zircon trace elements are characterized by relatively high Ti and Th/U and low Yb/Gd. The complex has similar zircon Hf and whole-rock Nd isotopic compositions, with Hf and Nd model ages younger than 1.4 Ga, suggesting that their magmas were derived from an isotopically depleted mantle, with some contributions from crustal melts. The leucogranites further showed relatively large variations of εHf(t) and lower εNd(t) values, implying that their magma was affected by higher amounts of crustal contamination. We suggest that crystal-melt segregation was the major mechanism responsible for the evolution of the magmatic system, and that the early Permian magmatism represents a crust-forming episode triggered by slab rollback of the subducting South Tianshan oceanic plate beneath the eastern Central Tianshan microcontinent. Thus, our study reveals that microcontinents with Precambrian crustal basement were major sites of juvenile continental growth during the accretionary evolution of the Central Asian Orogenic Belt.","PeriodicalId":55104,"journal":{"name":"Geological Society of America Bulletin","volume":" 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Society of America Bulletin","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/b36970.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The generation and modification of silicic magma systems are essential processes in resolving the differentiation of continental crust. This understanding motivated the geochronological and geochemical study of the early Permian Hongliujing granite complex, consisting of quartz monzonite, granite, and leucogranite in the Central Tianshan microcontinent of the southern Central Asian Orogenic Belt. Laser ablation−inductively coupled plasma−mass spectrometry (LA-ICP-MS) zircon U-Pb dating of the Hongliujing complex rock units revealed almost identical ages (279 ± 2 Ma to 270 ± 2 Ma). The high-silica leucogranite and granite are characterized by positive Rb and negative Eu anomalies and Ba, Sr, P, and Ti depletions. The zircon trace elements are characterized by relatively low Ti and Th/U and high Yb/Gd. In contrast, the quartz monzonite and its mafic microgranular enclaves display minor negative Ba, Sr, P, Ti, and Eu anomalies, while the zircon trace elements are characterized by relatively high Ti and Th/U and low Yb/Gd. The complex has similar zircon Hf and whole-rock Nd isotopic compositions, with Hf and Nd model ages younger than 1.4 Ga, suggesting that their magmas were derived from an isotopically depleted mantle, with some contributions from crustal melts. The leucogranites further showed relatively large variations of εHf(t) and lower εNd(t) values, implying that their magma was affected by higher amounts of crustal contamination. We suggest that crystal-melt segregation was the major mechanism responsible for the evolution of the magmatic system, and that the early Permian magmatism represents a crust-forming episode triggered by slab rollback of the subducting South Tianshan oceanic plate beneath the eastern Central Tianshan microcontinent. Thus, our study reveals that microcontinents with Precambrian crustal basement were major sites of juvenile continental growth during the accretionary evolution of the Central Asian Orogenic Belt.
期刊介绍:
The GSA Bulletin is the Society''s premier scholarly journal, published continuously since 1890. Its first editor was William John (WJ) McGee, who was responsible for establishing much of its original style and format. Fully refereed, each bimonthly issue includes 16-20 papers focusing on the most definitive, timely, and classic-style research in all earth-science disciplines. The Bulletin welcomes most contributions that are data-rich, mature studies of broad interest (i.e., of interest to more than one sub-discipline of earth science) and of lasting, archival quality. These include (but are not limited to) studies related to tectonics, structural geology, geochemistry, geophysics, hydrogeology, marine geology, paleoclimatology, planetary geology, quaternary geology/geomorphology, sedimentary geology, stratigraphy, and volcanology. The journal is committed to further developing both the scope of its content and its international profile so that it publishes the most current earth science research that will be of wide interest to geoscientists.