{"title":"Eddy-Induced Subsurface Spiciness Anomalies in the Kuroshio Extension Region","authors":"Mingkun Lv, Fan Wang, Yuanlong Li","doi":"10.1175/jpo-d-22-0254.1","DOIUrl":null,"url":null,"abstract":"\nWhile mesoscale eddy-induced temperature and salinity (T and S) variations at depth levels were widely reported, those on isopycnal surfaces have been largely unexplored so far. This study investigates temperature and salinity anomalies (T′ and S′; dubbed “spiciness anomalies”) on isopycnal surfaces induced by mesoscale eddies in the Kuroshio Extension (KET) region, with a focus on the North Pacific Intermediate Water (NPIW) layer of 26.3–26.7σθ. Cyclonic eddies (CEs) and anticyclonic eddies (AEs) tend to cluster on the northern and southern flanks of the KET jet, respectively. These eddies are characterized by a large radius (CEs: 61.94 km; AEs: 68.05 km), limited zonal movement, and a tendency of meridional movement (CEs: 0.35 cm s−1 southward; AEs: 0.66 cm s−1 northward). The average eddy-induced T′ and S′ are −0.25°C (0.06°C) and −0.05 psu (0.01 psu) for CEs (AEs) in the 26.3–26.7σθ layer. We propose two mechanisms for the generation of subsurface spiciness anomalies, respectively, for moving eddies that travel over long distances with trapped waters and quasi-stationary meander eddies that are generated by the meanders of the KET front. The T′ and S′ induced by moving eddies cumulatively drive cross-front water exchanges. Meander eddies shift the position of the front and induce redistribution of properties. However, these anomalies do not contribute to heat and salt exchanges between water masses. This work provides a useful benchmark for model simulations of mesoscale isopycnal variability in subsurface waters.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":" 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-22-0254.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
While mesoscale eddy-induced temperature and salinity (T and S) variations at depth levels were widely reported, those on isopycnal surfaces have been largely unexplored so far. This study investigates temperature and salinity anomalies (T′ and S′; dubbed “spiciness anomalies”) on isopycnal surfaces induced by mesoscale eddies in the Kuroshio Extension (KET) region, with a focus on the North Pacific Intermediate Water (NPIW) layer of 26.3–26.7σθ. Cyclonic eddies (CEs) and anticyclonic eddies (AEs) tend to cluster on the northern and southern flanks of the KET jet, respectively. These eddies are characterized by a large radius (CEs: 61.94 km; AEs: 68.05 km), limited zonal movement, and a tendency of meridional movement (CEs: 0.35 cm s−1 southward; AEs: 0.66 cm s−1 northward). The average eddy-induced T′ and S′ are −0.25°C (0.06°C) and −0.05 psu (0.01 psu) for CEs (AEs) in the 26.3–26.7σθ layer. We propose two mechanisms for the generation of subsurface spiciness anomalies, respectively, for moving eddies that travel over long distances with trapped waters and quasi-stationary meander eddies that are generated by the meanders of the KET front. The T′ and S′ induced by moving eddies cumulatively drive cross-front water exchanges. Meander eddies shift the position of the front and induce redistribution of properties. However, these anomalies do not contribute to heat and salt exchanges between water masses. This work provides a useful benchmark for model simulations of mesoscale isopycnal variability in subsurface waters.
期刊介绍:
The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.