Freestream Temperature Effects on the Receptivity of Hypersonic Boundary Layer Induced by Finite-Amplitude Pulse Entropy Waves

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2023-12-01 DOI:10.47176/jafm.16.12.1992
X. Tang, D. Chen, L. Liu, P. Zhu, L. Xin, M. Shi
{"title":"Freestream Temperature Effects on the Receptivity of Hypersonic Boundary Layer Induced by Finite-Amplitude Pulse Entropy Waves","authors":"X. Tang, D. Chen, L. Liu, P. Zhu, L. Xin, M. Shi","doi":"10.47176/jafm.16.12.1992","DOIUrl":null,"url":null,"abstract":"The unsteady hypersonic flow under finite amplitude pulse entropy perturbation at different freestream temperatures was calculated by direct numerical simulation. The flow response characteristics under the perturbation of entropy waves in freestreaming are analyzed. The temperature effect of freestreaming is studied based on the sensitivity of the boundary layer caused by pulse entropy perturbation. The results show that the higher freestream temperature promotes the first growth of the above third-order modes after leaving the head region, and strongly inhibits the first attenuation. The influence of the freestream temperature on the evolution of the induced disturbance wave is more significant than that on the development of the main flow disturbance waves. Low freestream temperature can suppress the attenuation of the modes below the second order. As the disturbance wave evolves downstream, the frequency band of the finite frequency disturbance wave gradually narrows, and the frequency band narrows faster when the temperature of freestreaming is low than when the temperature of freestreaming is high.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.12.1992","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The unsteady hypersonic flow under finite amplitude pulse entropy perturbation at different freestream temperatures was calculated by direct numerical simulation. The flow response characteristics under the perturbation of entropy waves in freestreaming are analyzed. The temperature effect of freestreaming is studied based on the sensitivity of the boundary layer caused by pulse entropy perturbation. The results show that the higher freestream temperature promotes the first growth of the above third-order modes after leaving the head region, and strongly inhibits the first attenuation. The influence of the freestream temperature on the evolution of the induced disturbance wave is more significant than that on the development of the main flow disturbance waves. Low freestream temperature can suppress the attenuation of the modes below the second order. As the disturbance wave evolves downstream, the frequency band of the finite frequency disturbance wave gradually narrows, and the frequency band narrows faster when the temperature of freestreaming is low than when the temperature of freestreaming is high.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自由流温度对有限振幅脉冲熵波诱导的高超声速边界层接收率的影响
采用直接数值模拟的方法计算了不同自由流温度下有限幅值脉冲熵扰动下的高超声速非定常流动。分析了自由流中熵波扰动下的流动响应特性。基于脉冲熵扰动引起的边界层敏感性,研究了自由流的温度效应。结果表明,较高的自由流温度促进了上述三阶模态在离开头区后的第一次生长,并强烈抑制了第一次衰减。自由流温度对诱导扰动波发展的影响比对主流扰动波发展的影响更为显著。低的自由流温度可以抑制二阶以下模态的衰减。随着扰动波向下游演进,有限频率扰动波的频带逐渐变窄,且当自由流温度较低时,频带变窄的速度快于自由流温度较高时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Scale Effects Investigation in Physical Modeling of Recirculating Shallow Flow Using Large Eddy Simulation Technique A Numerical Study on the Energy Dissipation Mechanisms of a Two-Stage Vertical Pump as Turbine Using Entropy Generation Theory Numerical Investigation of Oil–Air Flow Inside Tapered Roller Bearings with Oil Bath Lubrication Suppressing the Vortex Rope Oscillation and Pressure Fluctuations by the Air Admission in Propeller Hydro-Turbine Draft Tube Analysis of Near-wall Coherent Structure of Spiral Flow in Circular Pipe Based on Large Eddy Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1