{"title":"Application of an Open-Source OpenFoam for Fluid-Structure Interaction Analysis of the Horizontal-Axis Wind Turbine Blade","authors":"S. M. Belghoula, A. Benhamou","doi":"10.47176/jafm.16.12.1959","DOIUrl":null,"url":null,"abstract":"This study investigates numerical simulation for fluid-structure interaction in wind turbine blades, emphasizing the influence of dimensionless numbers. Utilizing OpenFoam, the Navier-Stokes equation is accurately solved with the PISO algorithm, ensuring proper interface conditions. The icoFsiFoam solver is validated through dynamic testing, demonstrating its effectiveness. In contrast to the widely adopted Blade Element Momentum Theory (BEMT), our approach focuses on analyzing blade deformation and resonance phenomena, capturing intricate deformations and stress concentrations. Our investigation explores the impact of reduced velocity on blade behavior across a range of 0.105 to 0.145, while consistently maintaining crucial dimensionless numbers such as Reynolds number (Re = 10⁶), Froude number (Fr = 4.93), and Cauchy number ( Cy = 10-5). The outcomes of this study significantly contribute to the understanding of fluid-structure interaction in wind turbine blades. By examining the oscillatory behavior of the blades, we observe trends similar to those predicted by BEMT. However, our approach surpasses BEMT by providing additional insights into stress concentrations and deformation modes. This advancement enables superior performance optimization and facilitates advanced blade analysis. The implications of our research are paramount for optimizing blade design and performance under varying reduced velocities. By incorporating the findings of this study, blade designers can make well-informed decisions to enhance the efficiency and durability of wind turbine technologies. The presented methodology and results provide a comprehensive investigation into the fluid-structure interaction of wind turbine blades, highlighting the importance of dimensionless numbers and their influence on blade behavior. Overall, this study offers valuable insights for improving wind turbine design and performance.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" 5","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.12.1959","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates numerical simulation for fluid-structure interaction in wind turbine blades, emphasizing the influence of dimensionless numbers. Utilizing OpenFoam, the Navier-Stokes equation is accurately solved with the PISO algorithm, ensuring proper interface conditions. The icoFsiFoam solver is validated through dynamic testing, demonstrating its effectiveness. In contrast to the widely adopted Blade Element Momentum Theory (BEMT), our approach focuses on analyzing blade deformation and resonance phenomena, capturing intricate deformations and stress concentrations. Our investigation explores the impact of reduced velocity on blade behavior across a range of 0.105 to 0.145, while consistently maintaining crucial dimensionless numbers such as Reynolds number (Re = 10⁶), Froude number (Fr = 4.93), and Cauchy number ( Cy = 10-5). The outcomes of this study significantly contribute to the understanding of fluid-structure interaction in wind turbine blades. By examining the oscillatory behavior of the blades, we observe trends similar to those predicted by BEMT. However, our approach surpasses BEMT by providing additional insights into stress concentrations and deformation modes. This advancement enables superior performance optimization and facilitates advanced blade analysis. The implications of our research are paramount for optimizing blade design and performance under varying reduced velocities. By incorporating the findings of this study, blade designers can make well-informed decisions to enhance the efficiency and durability of wind turbine technologies. The presented methodology and results provide a comprehensive investigation into the fluid-structure interaction of wind turbine blades, highlighting the importance of dimensionless numbers and their influence on blade behavior. Overall, this study offers valuable insights for improving wind turbine design and performance.
期刊介绍:
The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .