Jianwen Liu, Qing Zang, Yunfeng Liang, Jiale Chen, Xiaohe Wu, Alexander Knieps, Jiahui Hu, Yifei Jin, Bin Zhang, Yuqi Chu, Haiqing Liu, Bo Lyu, Yanmin Duan, Miaohui Li, Yingjie Chen, Xianzu Gong
{"title":"Impact of T_i⁄T_e ratio on ion transport based on EAST H-mode plasmas","authors":"Jianwen Liu, Qing Zang, Yunfeng Liang, Jiale Chen, Xiaohe Wu, Alexander Knieps, Jiahui Hu, Yifei Jin, Bin Zhang, Yuqi Chu, Haiqing Liu, Bo Lyu, Yanmin Duan, Miaohui Li, Yingjie Chen, Xianzu Gong","doi":"10.1088/2058-6272/ad1195","DOIUrl":null,"url":null,"abstract":"\n At the EAST tokamak, the ion temperature (Ti) is observed to be clamped around 1.25 keV in ECR-heated plasmas, even at core electron temperatures up to 10 keV (depending on the electron cyclotron resonance heating (ECRH) power and the plasma density). This clamping results from the lack of direct ion heating and high levels of turbulence driven transport. Turbulent transport analysis shows that trapped electron mode (TEM) and electron temperature gradient (ETG) driven modes are the most unstable modes in the core of ECR-heated H-mode plasmas. Nevertheless, recently it was found that the Ti/Te ratio can increase further with the fraction of the Neutral Beam Injection (NBI) power, which leads to a higher core ion temperature (Ti0). In NBI-heating-dominant H-mode plasmas, the ion temperature gradient (ITG) driven modes become the most unstable modes. Furthermore, a strong and broad internal transport barrier (ITB) can form at the plasma core in high-power NBI heated H-mode plasmas when the Ti/Te ratio approaches ~1, which results in steep core Te and Ti profiles, as well as a peaked ne profile. Power balance analysis shows a weaker Te profile stiffness after the formation of ITBs in the core plasma region, where Ti clamping is broken, and the core Ti can increase further above 2 keV, which is 80% higher than the value of Ti clamping in ECR-heated plasmas. This finding proposes a possible solution to the problem of Ti clamping in EAST and demonstrates an advanced operational regime with formation of a strong and broad ITB for future fusion plasmas dominated by electron heating.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1088/2058-6272/ad1195","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
At the EAST tokamak, the ion temperature (Ti) is observed to be clamped around 1.25 keV in ECR-heated plasmas, even at core electron temperatures up to 10 keV (depending on the electron cyclotron resonance heating (ECRH) power and the plasma density). This clamping results from the lack of direct ion heating and high levels of turbulence driven transport. Turbulent transport analysis shows that trapped electron mode (TEM) and electron temperature gradient (ETG) driven modes are the most unstable modes in the core of ECR-heated H-mode plasmas. Nevertheless, recently it was found that the Ti/Te ratio can increase further with the fraction of the Neutral Beam Injection (NBI) power, which leads to a higher core ion temperature (Ti0). In NBI-heating-dominant H-mode plasmas, the ion temperature gradient (ITG) driven modes become the most unstable modes. Furthermore, a strong and broad internal transport barrier (ITB) can form at the plasma core in high-power NBI heated H-mode plasmas when the Ti/Te ratio approaches ~1, which results in steep core Te and Ti profiles, as well as a peaked ne profile. Power balance analysis shows a weaker Te profile stiffness after the formation of ITBs in the core plasma region, where Ti clamping is broken, and the core Ti can increase further above 2 keV, which is 80% higher than the value of Ti clamping in ECR-heated plasmas. This finding proposes a possible solution to the problem of Ti clamping in EAST and demonstrates an advanced operational regime with formation of a strong and broad ITB for future fusion plasmas dominated by electron heating.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.