Effect of Different Types of External Guide Vanes on the Performance of High-Pressure Centrifugal Compressor

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2023-12-01 DOI:10.47176/jafm.16.12.1814
†. P.Niveditha, B. S. Gopi
{"title":"Effect of Different Types of External Guide Vanes on the Performance of High-Pressure Centrifugal Compressor","authors":"†. P.Niveditha, B. S. Gopi","doi":"10.47176/jafm.16.12.1814","DOIUrl":null,"url":null,"abstract":"In order to reduce exit swirl and obtain the desired Mach number, axial exit guide vanes (EGV) are often employed in a centrifugal compressor. NASA CC3 compressor, with wedge vane diffuser and without EGV, is considered as the base model for the analysis and validation. An axial flow domain with exit guide vane is added to this base model after the diffuser outlet to study the effect on the compressor performance. The performance of exit guide vane with different profiles: flat plate, symmetric wedge, circular arc, and airfoil vane profiles by maintaining the same chord, number of vanes, and flow angle of the vanes are studied. Numerical simulations are carried out with 60 number of exit guide vanes for all four types of vanes. Among several combinations, when the centrifugal compressor is equipped with 60 circular arc vanes as EGV, the efficiency and pressure recovery values at the design point have increased by 6.5% and 8.9%, respectively.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.12.1814","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to reduce exit swirl and obtain the desired Mach number, axial exit guide vanes (EGV) are often employed in a centrifugal compressor. NASA CC3 compressor, with wedge vane diffuser and without EGV, is considered as the base model for the analysis and validation. An axial flow domain with exit guide vane is added to this base model after the diffuser outlet to study the effect on the compressor performance. The performance of exit guide vane with different profiles: flat plate, symmetric wedge, circular arc, and airfoil vane profiles by maintaining the same chord, number of vanes, and flow angle of the vanes are studied. Numerical simulations are carried out with 60 number of exit guide vanes for all four types of vanes. Among several combinations, when the centrifugal compressor is equipped with 60 circular arc vanes as EGV, the efficiency and pressure recovery values at the design point have increased by 6.5% and 8.9%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同类型的外导叶对高压离心压缩机性能的影响
为了减小出口涡流并获得理想的马赫数,离心压气机常采用轴向出口导叶。NASA CC3压缩机采用楔形叶片扩压器,无EGV,作为分析验证的基础模型。在此基础模型中,在扩压器出口后增加一个带出口导叶的轴向流域,研究其对压气机性能的影响。研究了平面型、对称楔型、圆弧型和翼型等不同叶型出口导叶在保持相同弦数、叶数和叶角的情况下的性能。采用60个出口导叶对四种叶片进行了数值模拟。在几种组合中,当离心压缩机配置60个圆弧叶片作为EGV时,设计点效率和压力恢复值分别提高了6.5%和8.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Scale Effects Investigation in Physical Modeling of Recirculating Shallow Flow Using Large Eddy Simulation Technique A Numerical Study on the Energy Dissipation Mechanisms of a Two-Stage Vertical Pump as Turbine Using Entropy Generation Theory Numerical Investigation of Oil–Air Flow Inside Tapered Roller Bearings with Oil Bath Lubrication Suppressing the Vortex Rope Oscillation and Pressure Fluctuations by the Air Admission in Propeller Hydro-Turbine Draft Tube Analysis of Near-wall Coherent Structure of Spiral Flow in Circular Pipe Based on Large Eddy Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1