Aerodynamic Improvements of Buses Inspired by Beluga Whales

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2023-12-01 DOI:10.47176/jafm.16.12.1694
S. K. Arabaci, M. Pakdemirli†
{"title":"Aerodynamic Improvements of Buses Inspired by Beluga Whales","authors":"S. K. Arabaci, M. Pakdemirli†","doi":"10.47176/jafm.16.12.1694","DOIUrl":null,"url":null,"abstract":"The innovative bus designs, inspired by the whales, have been developed. The designs are confined to the frontal area of the buses. The new designs are named as the Beluga buses. Several variants of the models all mimicking Beluga whales are proposed. Both numerical analysis and experimental have been conducted to determine the drag coefficients of various models. The ANSYS CFD program was used for numerical simulations. WT tests were conducted to experimentally determine the drag coefficients. Both methods indicate that the beluga-inspired buses offer significant reductions in drag, which can lead to lower fuel consumption. The new beluga design is expected to reduce fuel consumption by 12.64%. Comparing the experimental and numerical results, a 6.4% discrepancy in the drag coefficients is observed at low Reynolds numbers, which became negligible at higher Reynolds numbers. The new geometry is expected to offer an economical solution for reducing fuel consumption.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" 10","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.12.1694","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The innovative bus designs, inspired by the whales, have been developed. The designs are confined to the frontal area of the buses. The new designs are named as the Beluga buses. Several variants of the models all mimicking Beluga whales are proposed. Both numerical analysis and experimental have been conducted to determine the drag coefficients of various models. The ANSYS CFD program was used for numerical simulations. WT tests were conducted to experimentally determine the drag coefficients. Both methods indicate that the beluga-inspired buses offer significant reductions in drag, which can lead to lower fuel consumption. The new beluga design is expected to reduce fuel consumption by 12.64%. Comparing the experimental and numerical results, a 6.4% discrepancy in the drag coefficients is observed at low Reynolds numbers, which became negligible at higher Reynolds numbers. The new geometry is expected to offer an economical solution for reducing fuel consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以白鲸为灵感改进公交车的空气动力性能
受鲸鱼启发的创新巴士设计已经开发出来。这些设计仅限于公共汽车的前部区域。这种新设计被命名为白鲸巴士。提出了几种模拟白鲸的模型变体。通过数值分析和试验确定了各种模型的阻力系数。采用ANSYS CFD软件进行数值模拟。进行小波变换试验,实验确定阻力系数。这两种方法都表明,受白鲸启发的巴士可以显著减少阻力,从而降低燃料消耗。新的白鲸设计预计将减少12.64%的燃油消耗。对比实验和数值结果,低雷诺数时阻力系数差异为6.4%,高雷诺数时可以忽略不计。新的几何形状有望提供一个经济的解决方案,以减少燃料消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Scale Effects Investigation in Physical Modeling of Recirculating Shallow Flow Using Large Eddy Simulation Technique A Numerical Study on the Energy Dissipation Mechanisms of a Two-Stage Vertical Pump as Turbine Using Entropy Generation Theory Numerical Investigation of Oil–Air Flow Inside Tapered Roller Bearings with Oil Bath Lubrication Suppressing the Vortex Rope Oscillation and Pressure Fluctuations by the Air Admission in Propeller Hydro-Turbine Draft Tube Analysis of Near-wall Coherent Structure of Spiral Flow in Circular Pipe Based on Large Eddy Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1