An Urban Image Stimulus Set Generated from Social Media

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Pub Date : 2023-12-01 DOI:10.3390/data8120184
Ardaman Kaur, André Leite Rodrigues, Sarah Hoogstraten, D. A. Blanco-Mora, B. Miranda, Paulo Morgado, Dar Meshi
{"title":"An Urban Image Stimulus Set Generated from Social Media","authors":"Ardaman Kaur, André Leite Rodrigues, Sarah Hoogstraten, D. A. Blanco-Mora, B. Miranda, Paulo Morgado, Dar Meshi","doi":"10.3390/data8120184","DOIUrl":null,"url":null,"abstract":"Social media data, such as photos and status posts, can be tagged with location information (geotagging). This geotagged information can be used for urban spatial analysis to explore neighborhood characteristics or mobility patterns. With increasing rural-to-urban migration, there is a need for comprehensive data capturing the complexity of urban settings and their influence on human experiences. Here, we share an urban image stimulus set from the city of Lisbon that researchers can use in their experiments. The stimulus set consists of 160 geotagged urban space photographs extracted from the Flickr social media platform. We divided the city into 100 × 100 m cells to calculate the cell image density (number of images in each cell) and the cell green index (Normalized Difference Vegetation Index of each cell) and assigned these values to each geotagged image. In addition, we also computed the popularity of each image (normalized views on the social network). We also categorized these images into two putative groups by photographer status (residents and tourists), with 80 images belonging to each group. With the rise in data-driven decisions in urban planning, this stimulus set helps explore human–urban environment interaction patterns, especially if complemented with survey/neuroimaging measures or machine-learning analyses.","PeriodicalId":36824,"journal":{"name":"Data","volume":"34 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.3390/data8120184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Social media data, such as photos and status posts, can be tagged with location information (geotagging). This geotagged information can be used for urban spatial analysis to explore neighborhood characteristics or mobility patterns. With increasing rural-to-urban migration, there is a need for comprehensive data capturing the complexity of urban settings and their influence on human experiences. Here, we share an urban image stimulus set from the city of Lisbon that researchers can use in their experiments. The stimulus set consists of 160 geotagged urban space photographs extracted from the Flickr social media platform. We divided the city into 100 × 100 m cells to calculate the cell image density (number of images in each cell) and the cell green index (Normalized Difference Vegetation Index of each cell) and assigned these values to each geotagged image. In addition, we also computed the popularity of each image (normalized views on the social network). We also categorized these images into two putative groups by photographer status (residents and tourists), with 80 images belonging to each group. With the rise in data-driven decisions in urban planning, this stimulus set helps explore human–urban environment interaction patterns, especially if complemented with survey/neuroimaging measures or machine-learning analyses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由社交媒体生成的城市形象刺激集
社交媒体数据,如照片和状态帖子,可以标记位置信息(地理标记)。这些地理标记信息可以用于城市空间分析,以探索社区特征或流动模式。随着越来越多的农村人口向城市迁移,需要收集综合数据,了解城市环境的复杂性及其对人类经验的影响。在这里,我们分享了来自里斯本市的城市图像刺激集,研究人员可以在他们的实验中使用。刺激集由160张从Flickr社交媒体平台上提取的带有地理标记的城市空间照片组成。我们将城市划分为100 × 100 m的单元格,计算单元格图像密度(每个单元格中的图像数量)和单元格绿色指数(每个单元格的归一化植被指数),并将这些值分配给每个地理标记图像。此外,我们还计算了每个图像的受欢迎程度(在社交网络上的规范化视图)。我们还根据摄影师的身份(居民和游客)将这些图像分为两组,每组有80张图像。随着城市规划中数据驱动决策的增加,该刺激集有助于探索人与城市环境的相互作用模式,特别是如果与调查/神经成像措施或机器学习分析相辅相成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
期刊最新文献
Medical Opinions Analysis about the Decrease of Autopsies Using Emerging Pattern Mining Unlocking Insights: Analysing COVID-19 Lockdown Policies and Mobility Data in Victoria, Australia, through a Data-Driven Machine Learning Approach Expert-Annotated Dataset to Study Cyberbullying in Polish Language Genome Sequence of the Plant-Growth-Promoting Endophyte Curtobacterium flaccumfaciens Strain W004 A Qualitative Dataset for Coffee Bio-Aggressors Detection Based on the Ancestral Knowledge of the Cauca Coffee Farmers in Colombia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1