Accuracy Analysis on Design of Stochastic Computing in Arithmetic Components and Combinational Circuit

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computation Pub Date : 2023-12-01 DOI:10.3390/computation11120237
P. Ashok, B. Bala Tripura Sundari
{"title":"Accuracy Analysis on Design of Stochastic Computing in Arithmetic Components and Combinational Circuit","authors":"P. Ashok, B. Bala Tripura Sundari","doi":"10.3390/computation11120237","DOIUrl":null,"url":null,"abstract":"Stochastic circuits are used in applications that require low area and power consumption. The computing performed using these circuits is referred to as Stochastic computing (SC). The arithmetic operations in this computing can be realized using minimum logic circuits. The SC system allows a tradeoff of computational accuracy and area; thereby, the challenge in SC is improving the accuracy. The accuracy depends on the SC system’s stochastic number generator (SNG) part. SNGs provide the appropriate stochastic input required for stochastic computation. Hence we explore the accuracy in SC for various arithmetic operations performed using stochastic computing with the help of logic circuits. The contributions in this paper are; first, we have performed stochastic computing for arithmetic components using two different SNGs. The SNGs considered are Linear Feed-back Shift Register (LFSR) -based traditional stochastic number generators and S-box-based stochastic number generators. Second, the arithmetic components are implemented in a combinational circuit for algebraic expression in the stochastic domain using two different SNGs. Third, computational analysis for stochastic arithmetic components and the stochastic algebraic equation has been conducted. Finally, accuracy analysis and measurement are performed between LFSR-based computation and S-box-based computation. The novel aspect of this work is the use of S-box-based SNG in the development of stochastic computing in arithmetic components. Also, the implementation of stochastic computing in the combinational circuit using the developed basic arithmetic components, and exploration of accuracy with respect to stochastic number generators used is presented.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"29 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11120237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic circuits are used in applications that require low area and power consumption. The computing performed using these circuits is referred to as Stochastic computing (SC). The arithmetic operations in this computing can be realized using minimum logic circuits. The SC system allows a tradeoff of computational accuracy and area; thereby, the challenge in SC is improving the accuracy. The accuracy depends on the SC system’s stochastic number generator (SNG) part. SNGs provide the appropriate stochastic input required for stochastic computation. Hence we explore the accuracy in SC for various arithmetic operations performed using stochastic computing with the help of logic circuits. The contributions in this paper are; first, we have performed stochastic computing for arithmetic components using two different SNGs. The SNGs considered are Linear Feed-back Shift Register (LFSR) -based traditional stochastic number generators and S-box-based stochastic number generators. Second, the arithmetic components are implemented in a combinational circuit for algebraic expression in the stochastic domain using two different SNGs. Third, computational analysis for stochastic arithmetic components and the stochastic algebraic equation has been conducted. Finally, accuracy analysis and measurement are performed between LFSR-based computation and S-box-based computation. The novel aspect of this work is the use of S-box-based SNG in the development of stochastic computing in arithmetic components. Also, the implementation of stochastic computing in the combinational circuit using the developed basic arithmetic components, and exploration of accuracy with respect to stochastic number generators used is presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
算术元件和组合电路中随机计算设计的精度分析
随机电路用于需要低面积和低功耗的应用中。使用这些电路进行的计算称为随机计算(SC)。这种计算中的算术运算可以用最少的逻辑电路来实现。SC系统允许权衡计算精度和面积;因此,SC的挑战在于提高准确性。其精度取决于SC系统的随机数发生器(SNG)部分。sng为随机计算提供了适当的随机输入。因此,我们探讨了SC在逻辑电路的帮助下使用随机计算进行各种算术运算的准确性。本文的贡献有:首先,我们使用两个不同的sng对算术分量进行了随机计算。考虑的随机数字发生器有基于线性反馈移位寄存器(LFSR)的传统随机数字发生器和基于s盒的随机数字发生器。其次,算法组件在组合电路中实现,使用两个不同的sng在随机域中进行代数表达。第三,对随机算法分量和随机代数方程进行了计算分析。最后,对基于lfsr的计算和基于s盒的计算进行了精度分析和测量。这项工作的新颖方面是在算术组件的随机计算发展中使用基于s盒的SNG。此外,本文还介绍了利用所开发的基本算法组件在组合电路中实现随机计算,并探讨了所使用的随机数字发生器的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computation
Computation Mathematics-Applied Mathematics
CiteScore
3.50
自引率
4.50%
发文量
201
审稿时长
8 weeks
期刊介绍: Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.
期刊最新文献
Analytical and Numerical Investigation of Two-Dimensional Heat Transfer with Periodic Boundary Conditions Enhancement of Machine-Learning-Based Flash Calculations near Criticality Using a Resampling Approach Corporate Bankruptcy Prediction Models: A Comparative Study for the Construction Sector in Greece Analysis of Effectiveness of Combined Surface Treatment Methods for Structural Parts with Holes to Enhance Their Fatigue Life A New Mixed Fractional Derivative with Applications in Computational Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1