{"title":"LSPC: Exploring contrastive clustering based on local semantic information and prototype","authors":"Jun-Fen Chen, Lang Sun, Bo-Jun Xie","doi":"10.1016/j.is.2023.102336","DOIUrl":null,"url":null,"abstract":"<div><p>Recently years, several prominent contrastive learning<span><span> algorithms, a kind of self-supervised learning methods, have been extensively studied that can efficiently extract useful feature representations from input images by means of data augmentation techniques. How to further partition the representations into meaningful clusters is the issue that deep clustering is addressing. In this work, a deep </span>clustering algorithm based on local semantic information and prototype is proposed referring to LSPC that aims at learning a group of representative prototypes. Rather than learning the distinguishing characteristics between different images, more attention is given to the essential characteristics of images that are maybe from a potential category. On the training framework, contrastive learning is skillfully combined with k-means clustering algorithm. The prediction is transformed into soft assignments for end-to-end training. In order to enable the model to accurately capture the semantic information between images, we mine similar samples of training samples in the embedded space as local semantic information to effectively increase the similarity between samples belonging to the same cluster. Experimental results show that our algorithm achieves state-of-the-art performance on several commonly used public datasets, and additional experiments prove that this superior clustering performance can also be extended to large datasets such as ImageNet.</span></p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"121 ","pages":"Article 102336"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437923001722","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently years, several prominent contrastive learning algorithms, a kind of self-supervised learning methods, have been extensively studied that can efficiently extract useful feature representations from input images by means of data augmentation techniques. How to further partition the representations into meaningful clusters is the issue that deep clustering is addressing. In this work, a deep clustering algorithm based on local semantic information and prototype is proposed referring to LSPC that aims at learning a group of representative prototypes. Rather than learning the distinguishing characteristics between different images, more attention is given to the essential characteristics of images that are maybe from a potential category. On the training framework, contrastive learning is skillfully combined with k-means clustering algorithm. The prediction is transformed into soft assignments for end-to-end training. In order to enable the model to accurately capture the semantic information between images, we mine similar samples of training samples in the embedded space as local semantic information to effectively increase the similarity between samples belonging to the same cluster. Experimental results show that our algorithm achieves state-of-the-art performance on several commonly used public datasets, and additional experiments prove that this superior clustering performance can also be extended to large datasets such as ImageNet.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.