Design and Self Assembly of Tri-Terpene Peptide Conjugates and Their Interactions with EGFR and EGFR Mutant Receptors: An In Silico and In Vitro Study

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Peptide Research and Therapeutics Pub Date : 2023-12-14 DOI:10.1007/s10989-023-10583-6
Mia I. Rico, Beatriz G. Goncalves, Hannah L. Hunt, Ipsita A. Banerjee
{"title":"Design and Self Assembly of Tri-Terpene Peptide Conjugates and Their Interactions with EGFR and EGFR Mutant Receptors: An In Silico and In Vitro Study","authors":"Mia I. Rico, Beatriz G. Goncalves, Hannah L. Hunt, Ipsita A. Banerjee","doi":"10.1007/s10989-023-10583-6","DOIUrl":null,"url":null,"abstract":"<p>In this work, we designed new terpenoid-peptide conjugates to target the epidermal growth factor receptor (EGFR) and its double mutant EGFR T790M/L858R which are implicated in many cancers. The peptides utilized were MEGPSKCCFSLALSH (MFSL), a new peptide sequence designed by mutating an ErbB2 targeting peptide, while the sequence VPWXE was derived from a peptide motif known to target tumor cells. Each of the peptides were conjugated to four terpenoids, 23-hydroxy betulinic acid (HB), oleanolic acid, perillic acid, and ursolic acid. Molecular docking and molecular dynamics (MD) simulations with the kinase domain of both the wild type and double mutant EGFR receptors revealed that the conjugates formed H-bonds and hydrophobic interactions with key residues in the hinge region, A-loop, and DFG motif, while in the case of the double mutant, interactions also occurred with C-terminal residues and with allosteric sites. MMGBSA analysis revealed higher binding energies for the double mutant. Six of the conjugates were synthesized and self-assembled into nanoassemblies and their impact on tumor cells expressing the wild type and double mutant receptor revealed that higher apoptosis was induced by MFSL conjugates, particularly in cells expressing the double mutant EGFR receptor. The HB and ursolate conjugates were found to be more potent against the tumor cell lines. Overall, these results indicate that these peptides and peptide conjugates can effectively bind to both the wild type and the T790M/L858R receptors to target tumor cells. Such peptide conjugates may be further potentially developed as therapeutic agents for further laboratory studies against tumors overexpressing EGFR.</p>","PeriodicalId":14217,"journal":{"name":"International Journal of Peptide Research and Therapeutics","volume":"4 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Peptide Research and Therapeutics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10989-023-10583-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we designed new terpenoid-peptide conjugates to target the epidermal growth factor receptor (EGFR) and its double mutant EGFR T790M/L858R which are implicated in many cancers. The peptides utilized were MEGPSKCCFSLALSH (MFSL), a new peptide sequence designed by mutating an ErbB2 targeting peptide, while the sequence VPWXE was derived from a peptide motif known to target tumor cells. Each of the peptides were conjugated to four terpenoids, 23-hydroxy betulinic acid (HB), oleanolic acid, perillic acid, and ursolic acid. Molecular docking and molecular dynamics (MD) simulations with the kinase domain of both the wild type and double mutant EGFR receptors revealed that the conjugates formed H-bonds and hydrophobic interactions with key residues in the hinge region, A-loop, and DFG motif, while in the case of the double mutant, interactions also occurred with C-terminal residues and with allosteric sites. MMGBSA analysis revealed higher binding energies for the double mutant. Six of the conjugates were synthesized and self-assembled into nanoassemblies and their impact on tumor cells expressing the wild type and double mutant receptor revealed that higher apoptosis was induced by MFSL conjugates, particularly in cells expressing the double mutant EGFR receptor. The HB and ursolate conjugates were found to be more potent against the tumor cell lines. Overall, these results indicate that these peptides and peptide conjugates can effectively bind to both the wild type and the T790M/L858R receptors to target tumor cells. Such peptide conjugates may be further potentially developed as therapeutic agents for further laboratory studies against tumors overexpressing EGFR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三萜肽共轭物的设计和自组装及其与表皮生长因子受体和表皮生长因子受体突变受体的相互作用:硅学和体外研究
在这项工作中,我们设计了新的萜类肽缀合物来靶向表皮生长因子受体(EGFR)及其双突变体EGFR T790M/L858R,这与许多癌症有关。利用的肽是MEGPSKCCFSLALSH (MFSL),这是一个通过突变ErbB2靶向肽而设计的新肽序列,而序列VPWXE来源于已知的靶向肿瘤细胞的肽基序。每个肽与四种萜类化合物结合,23-羟基白桦酸(HB),齐墩果酸,紫苏酸和熊果酸。与野生型和双突变型EGFR受体激酶结构域的分子对接和分子动力学(MD)模拟显示,共轭物与铰链区、a环和DFG基序的关键残基形成了氢键和疏水相互作用,而在双突变型的情况下,与c端残基和变构位点也发生了相互作用。MMGBSA分析显示双突变体的结合能较高。其中6个偶联物被合成并自组装成纳米组件,它们对表达野生型和双突变受体的肿瘤细胞的影响表明,MFSL偶联物诱导的细胞凋亡率更高,特别是在表达双突变EGFR受体的细胞中。发现HB和熊索酸偶联物对肿瘤细胞系更有效。总之,这些结果表明这些肽和肽偶联物可以有效地结合野生型和T790M/L858R受体靶向肿瘤细胞。这种肽缀合物可能进一步发展为治疗药物,用于进一步的实验室研究,以对抗过表达EGFR的肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
8.00%
发文量
131
审稿时长
>12 weeks
期刊介绍: The International Journal for Peptide Research & Therapeutics is an international, peer-reviewed journal focusing on issues, research, and integration of knowledge on the latest developments in peptide therapeutics. The Journal brings together in a single source the most exciting work in peptide research, including isolation, structural characterization, synthesis and biological activity of peptides, and thereby aids in the development of unifying concepts from diverse perspectives. The Journal invites substantial contributions in the following thematic areas: -New advances in peptide drug delivery systems. -Application of peptide therapeutics to specific diseases. -New advances in synthetic methods. -The development of new procedures for construction of peptide libraries and methodology for screening of such mixtures. -The use of peptides in the study of enzyme specificity and mechanism, receptor binding and antibody/antigen interactions -Applications of such techniques as chromatography, electrophoresis, NMR and X-ray crystallography, mass spectrometry.
期刊最新文献
Synthetic studies of the mutant proinsulin syndrome demonstrate correlation between folding efficiency and age of diabetes onset. Isolation of Peptide Ligands for the HIV Capsid Protein p24 by Phage-Display. Molecular Chimera in Cancer Drug Discovery: Beyond Antibody Therapy, Designing Grafted Stable Peptides Targeting Cancer. Synthetic Short Cryptic Antimicrobial Peptides as Templates for the Development of Novel Biotherapeutics Against WHO Priority Pathogen Molecular Mechanism of NL13 Peptide of Adenosyl Homocysteinase Against ER Stress through Nrf2 Signaling Cascade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1