Rectified deep neural networks overcome the curse of dimensionality when approximating solutions of McKean--Vlasov stochastic differential equations

Ariel Neufeld, Tuan Anh Nguyen
{"title":"Rectified deep neural networks overcome the curse of dimensionality when approximating solutions of McKean--Vlasov stochastic differential equations","authors":"Ariel Neufeld, Tuan Anh Nguyen","doi":"arxiv-2312.07042","DOIUrl":null,"url":null,"abstract":"In this paper we prove that rectified deep neural networks do not suffer from\nthe curse of dimensionality when approximating McKean--Vlasov SDEs in the sense\nthat the number of parameters in the deep neural networks only grows\npolynomially in the space dimension $d$ of the SDE and the reciprocal of the\naccuracy $\\epsilon$.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.07042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove that rectified deep neural networks do not suffer from the curse of dimensionality when approximating McKean--Vlasov SDEs in the sense that the number of parameters in the deep neural networks only grows polynomially in the space dimension $d$ of the SDE and the reciprocal of the accuracy $\epsilon$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整流深度神经网络在近似麦金--弗拉索夫随机微分方程的解时克服了维度诅咒
本文证明了整流深度神经网络在逼近McKean—Vlasov SDE时不受维数诅咒的影响,即深度神经网络中的参数数量仅在SDE的空间维数d和精度的倒数中呈多项式增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the SQP Method for Hyperbolic PDE-Constrained Optimization in Acoustic Full Waveform Inversion Detection of a piecewise linear crack with one incident wave Randomized quasi-Monte Carlo and Owen's boundary growth condition: A spectral analysis Energy stable gradient flow schemes for shape and topology optimization in Navier-Stokes flows Exponential time propagators for elastodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1