{"title":"A surrogate-assisted evolutionary algorithm with clustering-based sampling for high-dimensional expensive blackbox optimization","authors":"Fusheng Bai, Dongchi Zou, Yutao Wei","doi":"10.1007/s10898-023-01343-3","DOIUrl":null,"url":null,"abstract":"<p>Many practical problems involve the optimization of computationally expensive blackbox functions. The computational cost resulting from expensive function evaluations considerably limits the number of true objective function evaluations allowed in order to find a good solution. In this paper, we propose a clustering-based surrogate-assisted evolutionary algorithm, in which a clustering-based local search technique is embedded into the radial basis function surrogate-assisted evolutionary algorithm framework to obtain sample points which might be close to the local solutions of the actual optimization problem. The algorithm generates sample points cyclically by the clustering-based local search, which takes the cluster centers of the ultimate population obtained by the differential evolution iterations applied to the surrogate model in one cycle as new sample points, and these new sample points are added into the initial population for the differential evolution iterations of the next cycle. In this way the exploration and the exploitation are better balanced during the search process. To verify the effectiveness of the present algorithm, it is compared with four state-of-the-art surrogate-assisted evolutionary algorithms on 24 synthetic test problems and one application problem. Experimental results show that the present algorithm outperforms other algorithms on most synthetic test problems and the application problem.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"33 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-023-01343-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Many practical problems involve the optimization of computationally expensive blackbox functions. The computational cost resulting from expensive function evaluations considerably limits the number of true objective function evaluations allowed in order to find a good solution. In this paper, we propose a clustering-based surrogate-assisted evolutionary algorithm, in which a clustering-based local search technique is embedded into the radial basis function surrogate-assisted evolutionary algorithm framework to obtain sample points which might be close to the local solutions of the actual optimization problem. The algorithm generates sample points cyclically by the clustering-based local search, which takes the cluster centers of the ultimate population obtained by the differential evolution iterations applied to the surrogate model in one cycle as new sample points, and these new sample points are added into the initial population for the differential evolution iterations of the next cycle. In this way the exploration and the exploitation are better balanced during the search process. To verify the effectiveness of the present algorithm, it is compared with four state-of-the-art surrogate-assisted evolutionary algorithms on 24 synthetic test problems and one application problem. Experimental results show that the present algorithm outperforms other algorithms on most synthetic test problems and the application problem.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.