Audio super-resolution via vision transformer

IF 2.3 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Information Systems Pub Date : 2023-12-12 DOI:10.1007/s10844-023-00833-w
Simona Nisticò, Luigi Palopoli, Adele Pia Romano
{"title":"Audio super-resolution via vision transformer","authors":"Simona Nisticò, Luigi Palopoli, Adele Pia Romano","doi":"10.1007/s10844-023-00833-w","DOIUrl":null,"url":null,"abstract":"<p>Audio super-resolution refers to techniques that improve the audio signals quality, usually by exploiting bandwidth extension methods, whereby audio enhancement is obtained by expanding the phase and the spectrogram of the input audio traces. These techniques are therefore much significant for all those cases where audio traces miss relevant parts of the audible spectrum. In several cases, the given input signal contains the low-band frequencies (the easiest to capture with low-quality recording instruments) whereas the high-band must be generated. In this paper, we illustrate techniques implemented into a system for bandwidth extension that works on musical tracks and generates the high-band frequencies starting from the low-band ones. The system, called <i>ViT Super-resolution</i> (<span>\\(\\textit{ViT-SR}\\)</span>), features an architecture based on a Generative Adversarial Network and Vision Transformer model. In particular, two versions of the architecture will be presented in this paper, that work on different input frequency ranges. Experiments, which are accounted for in the paper, prove the effectiveness of our approach. In particular, the objective has been attained to demonstrate that it is possible to faithfully reconstruct the high-band signal of an audio file having only its low-band spectrum available as the input, therewith including the usually difficult to synthetically generate harmonics occurring in the audio tracks, which significantly contribute to the final perceived sound quality.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"90 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-023-00833-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Audio super-resolution refers to techniques that improve the audio signals quality, usually by exploiting bandwidth extension methods, whereby audio enhancement is obtained by expanding the phase and the spectrogram of the input audio traces. These techniques are therefore much significant for all those cases where audio traces miss relevant parts of the audible spectrum. In several cases, the given input signal contains the low-band frequencies (the easiest to capture with low-quality recording instruments) whereas the high-band must be generated. In this paper, we illustrate techniques implemented into a system for bandwidth extension that works on musical tracks and generates the high-band frequencies starting from the low-band ones. The system, called ViT Super-resolution (\(\textit{ViT-SR}\)), features an architecture based on a Generative Adversarial Network and Vision Transformer model. In particular, two versions of the architecture will be presented in this paper, that work on different input frequency ranges. Experiments, which are accounted for in the paper, prove the effectiveness of our approach. In particular, the objective has been attained to demonstrate that it is possible to faithfully reconstruct the high-band signal of an audio file having only its low-band spectrum available as the input, therewith including the usually difficult to synthetically generate harmonics occurring in the audio tracks, which significantly contribute to the final perceived sound quality.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过视觉变压器实现超分辨率音频
音频超分辨率是指提高音频信号质量的技术,通常通过利用带宽扩展方法,通过扩展输入音频走线的相位和频谱图来获得音频增强。因此,这些技术对于所有音频跟踪丢失可听频谱相关部分的情况都非常重要。在一些情况下,给定的输入信号包含低频带频率(用低质量的录音仪器最容易捕获),而必须生成高频带。在本文中,我们举例说明了实现到带宽扩展系统中的技术,该系统适用于音乐轨道,并从低频带开始产生高频带频率。该系统被称为ViT超分辨率(\(\textit{ViT-SR}\)),其特点是基于生成对抗网络和视觉转换模型的架构。特别地,本文将介绍该架构的两个版本,它们在不同的输入频率范围内工作。实验证明了该方法的有效性。特别是,目标已经实现,以证明有可能忠实地重建音频文件的高频带信号,只有其低频带频谱可用作为输入,从而包括通常难以合成产生的音频轨道中出现的谐波,这对最终感知的音质有重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent Information Systems
Journal of Intelligent Information Systems 工程技术-计算机:人工智能
CiteScore
7.20
自引率
11.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems. These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to: discover knowledge from large data collections, provide cooperative support to users in complex query formulation and refinement, access, retrieve, store and manage large collections of multimedia data and knowledge, integrate information from multiple heterogeneous data and knowledge sources, and reason about information under uncertain conditions. Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces. The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.
期刊最新文献
Nirdizati: an advanced predictive process monitoring toolkit Graph attention networks with adaptive neighbor graph aggregation for cold-start recommendation FedGR: Cross-platform federated group recommendation system with hypergraph neural networks CONCORD: enhancing COVID-19 research with weak-supervision based numerical claim extraction DA-BAG: A multi-model fusion text classification method combining BERT and GCN using self-domain adversarial training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1