Jimmy de Rooij, Marleen Q. Vintges, Thim Zuidwijk, Carel T. H. Heerkens, Anne S. Schulp
{"title":"Quantification of bone surface textures: exploring a new method of ontogenetic ageing","authors":"Jimmy de Rooij, Marleen Q. Vintges, Thim Zuidwijk, Carel T. H. Heerkens, Anne S. Schulp","doi":"10.1186/s40543-023-00413-1","DOIUrl":null,"url":null,"abstract":"Identification of ontogenetic age classes plays an important role in the fields of zoology, palaeontology and archaeology, where accurate age classifications of (sub)fossil remains are a crucial component for the reconstruction of past life. Textural ageing—the identification of age-related bone surface textures—provides a size-independent method for age assessment of vertebrate material. However, most of the work so far is limited to qualitative results. While qualitative approaches provide helpful insights on textural ageing patterns, they are heavily subject to observer bias and fall short of quantitative data relevant for detailed statistical analyses and cross-comparisons. Here, we present a pilot study on the application of 3D surface digital microscopy to quantify bone surface textures on the long bones of the grey heron (Ardea cinerea) and the Canada goose (Branta canadensis) using internationally verified roughness parameters. Using a standardised measuring protocol, computed roughness values show a strong correlation with qualitative descriptions of textural patterns. Overall, higher roughness values correspond to increased numbers of grooves and pits and vice versa. Most of the roughness parameters allowed distinguishing between different ontogenetic classes and closely followed the typical sigmoidal animal growth curve. Our results show that bone texture quantification is a feasible approach to identifying ontogenetic age classes.","PeriodicalId":14967,"journal":{"name":"Journal of Analytical Science and Technology","volume":"17 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Science and Technology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40543-023-00413-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Identification of ontogenetic age classes plays an important role in the fields of zoology, palaeontology and archaeology, where accurate age classifications of (sub)fossil remains are a crucial component for the reconstruction of past life. Textural ageing—the identification of age-related bone surface textures—provides a size-independent method for age assessment of vertebrate material. However, most of the work so far is limited to qualitative results. While qualitative approaches provide helpful insights on textural ageing patterns, they are heavily subject to observer bias and fall short of quantitative data relevant for detailed statistical analyses and cross-comparisons. Here, we present a pilot study on the application of 3D surface digital microscopy to quantify bone surface textures on the long bones of the grey heron (Ardea cinerea) and the Canada goose (Branta canadensis) using internationally verified roughness parameters. Using a standardised measuring protocol, computed roughness values show a strong correlation with qualitative descriptions of textural patterns. Overall, higher roughness values correspond to increased numbers of grooves and pits and vice versa. Most of the roughness parameters allowed distinguishing between different ontogenetic classes and closely followed the typical sigmoidal animal growth curve. Our results show that bone texture quantification is a feasible approach to identifying ontogenetic age classes.
期刊介绍:
The Journal of Analytical Science and Technology (JAST) is a fully open access peer-reviewed scientific journal published under the brand SpringerOpen. JAST was launched by Korea Basic Science Institute in 2010. JAST publishes original research and review articles on all aspects of analytical principles, techniques, methods, procedures, and equipment. JAST’s vision is to be an internationally influential and widely read analytical science journal. Our mission is to inform and stimulate researchers to make significant professional achievements in science. We aim to provide scientists, researchers, and students worldwide with unlimited access to the latest advances of the analytical sciences.