Analysis of reconstruction of functions with rough edges from discrete Radon data in $\mathbb R^2$

Alexander Katsevich
{"title":"Analysis of reconstruction of functions with rough edges from discrete Radon data in $\\mathbb R^2$","authors":"Alexander Katsevich","doi":"arxiv-2312.08259","DOIUrl":null,"url":null,"abstract":"We study the accuracy of reconstruction of a family of functions\n$f_\\epsilon(x)$, $x\\in\\mathbb R^2$, $\\epsilon\\to0$, from their discrete Radon\ntransform data sampled with step size $O(\\epsilon)$. For each $\\epsilon>0$\nsufficiently small, the function $f_\\epsilon$ has a jump across a rough\nboundary $\\mathcal S_\\epsilon$, which is modeled by an $O(\\epsilon)$-size\nperturbation of a smooth boundary $\\mathcal S$. The function $H_0$, which\ndescribes the perturbation, is assumed to be of bounded variation. Let\n$f_\\epsilon^{\\text{rec}}$ denote the reconstruction, which is computed by\ninterpolating discrete data and substituting it into a continuous inversion\nformula. We prove that\n$(f_\\epsilon^{\\text{rec}}-K_\\epsilon*f_\\epsilon)(x_0+\\epsilon\\check\nx)=O(\\epsilon^{1/2}\\ln(1/\\epsilon))$, where $x_0\\in\\mathcal S$ and $K_\\epsilon$\nis an easily computable kernel.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.08259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the accuracy of reconstruction of a family of functions $f_\epsilon(x)$, $x\in\mathbb R^2$, $\epsilon\to0$, from their discrete Radon transform data sampled with step size $O(\epsilon)$. For each $\epsilon>0$ sufficiently small, the function $f_\epsilon$ has a jump across a rough boundary $\mathcal S_\epsilon$, which is modeled by an $O(\epsilon)$-size perturbation of a smooth boundary $\mathcal S$. The function $H_0$, which describes the perturbation, is assumed to be of bounded variation. Let $f_\epsilon^{\text{rec}}$ denote the reconstruction, which is computed by interpolating discrete data and substituting it into a continuous inversion formula. We prove that $(f_\epsilon^{\text{rec}}-K_\epsilon*f_\epsilon)(x_0+\epsilon\check x)=O(\epsilon^{1/2}\ln(1/\epsilon))$, where $x_0\in\mathcal S$ and $K_\epsilon$ is an easily computable kernel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从 $\mathbb R^2$ 中的离散拉顿数据重建具有粗糙边缘的函数的分析
我们研究了从步长为$O(\epsilon)$的离散Radontransform数据中重建一组函数$f_\epsilon(x)$, $x\in\mathbb R^2$, $\epsilon\to0$的精度。对于每个$\epsilon>0$足够小,函数$f_\epsilon$有一个跨越粗糙边界$\mathcal S_\epsilon$的跳跃,这是由光滑边界$\mathcal S$的$O(\epsilon)$ -size扰动来建模的。描述扰动的函数$H_0$被假定为有界变化。设$f_\epsilon^{\text{rec}}$表示重建,重建是通过插值离散数据并将其代入连续的反演公式来计算的。我们证明了$(f_\epsilon^{\text{rec}}-K_\epsilon*f_\epsilon)(x_0+\epsilon\checkx)=O(\epsilon^{1/2}\ln(1/\epsilon))$,其中$x_0\in\mathcal S$和$K_\epsilon$是一个容易计算的内核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the SQP Method for Hyperbolic PDE-Constrained Optimization in Acoustic Full Waveform Inversion Detection of a piecewise linear crack with one incident wave Randomized quasi-Monte Carlo and Owen's boundary growth condition: A spectral analysis Energy stable gradient flow schemes for shape and topology optimization in Navier-Stokes flows Exponential time propagators for elastodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1