Identification of diagnostic KASP-SNP markers for routine breeding activities in yam (Dioscorea spp.)

Paterne A. Agre, Lindsay V. Clark, Ana Luisa Garcia-Oliveira, Rajaguru Bohar, Patrick Adebola, Robert Asiedu, Ryohei Terauchi, Asrat Asfaw
{"title":"Identification of diagnostic KASP-SNP markers for routine breeding activities in yam (Dioscorea spp.)","authors":"Paterne A. Agre, Lindsay V. Clark, Ana Luisa Garcia-Oliveira, Rajaguru Bohar, Patrick Adebola, Robert Asiedu, Ryohei Terauchi, Asrat Asfaw","doi":"10.1002/tpg2.20419","DOIUrl":null,"url":null,"abstract":"Maintaining genetic purity and true-to-type clone identification are important action steps in breeding programs. This study aimed to develop a universal set of kompetitive allele-specific polymerase chain reaction (KASP)-based single nucleotide polymorphism (SNP) markers for routine breeding activities. Ultra-low-density SNP markers were created using an initial set of 173,675 SNPs that were obtained from whole-genome resequencing of 333 diverse white Guinea yam (<i>Dioscorea rotundata</i> Poir) genotypes. From whole-genome resequencing data, 99 putative SNP markers were found and successfully converted to high-throughput KASP genotyping assays. The markers set was validated on 374 genotypes representing six yam species. Out of the 99 markers, 50 were highly polymorphic across the species and could distinguish different yam species and pedigree origins. The selected SNP markers classified the validation population based on the different yam species and identified potential duplicates within yam species. Through penalized analysis, the male parent of progenies involved in polycrosses was successfully predicted and validated. Our research was a trailblazer in validating KASP-based SNP assays for species identification, parental fingerprinting, and quality control (QC) and quality assurance (QA) in yam breeding programs.","PeriodicalId":501653,"journal":{"name":"The Plant Genome","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Genome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/tpg2.20419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining genetic purity and true-to-type clone identification are important action steps in breeding programs. This study aimed to develop a universal set of kompetitive allele-specific polymerase chain reaction (KASP)-based single nucleotide polymorphism (SNP) markers for routine breeding activities. Ultra-low-density SNP markers were created using an initial set of 173,675 SNPs that were obtained from whole-genome resequencing of 333 diverse white Guinea yam (Dioscorea rotundata Poir) genotypes. From whole-genome resequencing data, 99 putative SNP markers were found and successfully converted to high-throughput KASP genotyping assays. The markers set was validated on 374 genotypes representing six yam species. Out of the 99 markers, 50 were highly polymorphic across the species and could distinguish different yam species and pedigree origins. The selected SNP markers classified the validation population based on the different yam species and identified potential duplicates within yam species. Through penalized analysis, the male parent of progenies involved in polycrosses was successfully predicted and validated. Our research was a trailblazer in validating KASP-based SNP assays for species identification, parental fingerprinting, and quality control (QC) and quality assurance (QA) in yam breeding programs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为山药(薯蓣属)的常规育种活动鉴定诊断性 KASP-SNP 标记
保持基因纯度和真型克隆鉴定是育种计划的重要步骤。本研究旨在开发一套通用的基于竞争性等位基因特异性聚合酶链反应(KASP)的单核苷酸多态性(SNP)标记,用于常规育种活动。利用333个不同白几内亚山药(Dioscorea rotundata Poir)基因型的全基因组重测序获得的173,675个SNP初始集创建了超低密度SNP标记。从全基因组重测序数据中,发现了99个假定的SNP标记,并成功转化为高通量KASP基因分型分析。该标记集在6个山药品种的374个基因型上进行了验证。在99个标记中,有50个在物种间具有高度多态性,可以区分不同的山药品种和谱系来源。选择的SNP标记根据不同的山药物种对验证群体进行分类,并在山药物种中鉴定出潜在的重复。通过惩罚分析,成功地预测和验证了多交后代的父本。我们的研究在验证基于kasp的SNP分析用于物种鉴定、亲本指纹识别以及山药育种计划的质量控制(QC)和质量保证(QA)方面是开创性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deciphering the genetic basis of novel traits that discriminate useful and non-useful biomass to enhance harvest index in wheat. Functional characterization of protein SUMOylation in the miRNA transcription regulation during heat stress in Arabidopsis Genome‐wide association mapping reveals novel genes and genomic regions controlling root‐lesion nematode resistance in chickpea mini core collection Genomic prediction for potato (Solanum tuberosum) quality traits improved through image analysis Multi‐locus genome‐wide association study for grain yield and drought tolerance indices in sorghum accessions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1